

 Application Note

General MCU RT_Thread Device Registration Application Note

Introduction

This document mainly describes the RT_Thread device registration of the N32G45x series, N32G4FR series,

N32WB452 series, N32G43x series, N32L40x series, and N32L43x series MCUs, so that users can quickly

familiarize themselves with the RT_Thread device driver.

I

Contents

1 Overview .. 1

1.1 Brief introduction ... 1

2 Device registration ... 2

2.1 I/O device ... 2

2.1.1 Introduction of I/O device ... 2

2.1.2 Create and register I/O device .. 3

2.1.3 Access I/O device ... 3

2.1.4 Find device .. 4

2.1.5 Initialize device ... 4

2.1.6 Open/close device .. 4

2.1.7 Control device ... 5

2.1.8 Read/write device .. 5

2.1.9 Data sending and receiving callback .. 6

2.2 PIN device .. 8

2.2.1 Introduction of PIN ... 8

2.2.2 Access PIN device .. 8

2.2.3 Set pin mode ... 9

2.2.4 Set pin level .. 9

2.2.5 Read pin level ... 9

2.2.6 Bind pin interrupt callback function ... 9

2.2.7 Enable pin interrupt .. 10

2.2.8 Breakout pin interrupt callback function .. 10

2.3 SPI device ... 11

2.3.1 Introduction of SPI ... 11

2.3.2 Mount SPI device ... 12

2.3.3 Configuring SPI device .. 13

2.3.4 Access SPI device ... 13

2.3.5 Find SPI device ... 14

2.3.6 Customize transmission data .. 14

2.3.7 Transfer data once... 15

2.3.8 Send data once .. 15

2.3.9 Receive data once ... 16

2.3.10 Send data twice in a row .. 16

2.3.11 Send first, then receive .. 18

2.3.12 Special application scenario ... 19

2.3.13 Get the bus .. 19

2.3.14 Select chip select .. 19

2.3.15 Add a message .. 19

2.3.16 Release chip select .. 20

2.3.17 Release the bus ... 20

II

2.4 UART device .. 21

2.4.1 Introduction of UART .. 21

2.4.2 Access serial port device ... 21

2.4.3 Find serial port device ... 21

2.4.4 Open serial port device .. 21

2.4.5 Control serial port device .. 22

2.4.6 Send data ... 23

2.4.7 Set the send completion callback function .. 23

2.4.8 Set the receive callback function .. 24

2.4.9 Receive data... 24

2.4.10 Close serial port device .. 25

2.5 I2C device ... 26

2.5.1 Introduction of I2C ... 26

2.5.2 Access I2C bus device ... 26

2.5.3 Find I2C bus device ... 26

2.5.4 Data transfer .. 26

2.6 ADC device .. 28

2.6.1 Introduction of ADC ... 28

2.6.2 Access ADC device .. 28

2.6.3 Find ADC device .. 28

2.6.4 Enable ADC channel .. 28

2.6.5 Read ADC channel sampling value .. 29

2.6.6 Close ADC channel .. 29

2.7 DAC device .. 30

2.7.1 Introduction of DAC ... 30

2.7.2 Access DAC device .. 30

2.7.3 Find DAC device .. 30

2.7.4 Enable DAC channel .. 30

2.7.5 Set DAC channel output value ... 31

2.7.6 Close DAC channel .. 31

2.8 CAN device .. 32

2.8.1 Introduction of CAN ... 32

2.8.2 Access CAN device .. 32

2.8.3 Find CAN device .. 32

2.8.4 Open CAN device ... 32

2.8.5 Control CAN device ... 33

2.8.6 Send data ... 33

2.8.7 Set receive callback function ... 33

2.8.8 Receive data... 34

2.8.9 Close CAN device .. 34

2.9 HWTIMER device .. 35

2.9.1 Introduction of Timer ... 35

2.9.2 Access hardware timer device ... 35

2.9.3 Find timer device .. 35

III

2.9.4 Open timer device ... 35

2.9.5 Set timeout callback function .. 36

2.9.6 Control timer device ... 36

2.9.7 Set timer timeout value .. 36

2.9.8 Get current timer value .. 37

2.9.1 Close timer device .. 37

2.10 WATCHDOG device .. 38

2.10.1 Introduction of WATCHDOG ... 38

2.10.2 Access watchdog device ... 38

2.10.3 Find watchdog ... 38

2.10.4 Initialize watchdog .. 38

2.10.5 Control watchdog .. 39

2.10.6 Feed dog in the idle thread hook function ... 39

2.10.7 Close watchdog ... 39

3 Version history ... 40

4 NOTICE... Error! Bookmark not defined.

1/41

1 Overview

1.1 Brief Introduction

This document mainly describes the RT_Thread device registration of the N32G45x series, N32G4FR series,

N32WB452 series, N32G43x series, N32L40x series, and N32L43x series MCUs, so that users can quickly

familiarize themselves with the RT_Thread device driver.

2/41

2 Device Registration

2.1 I/O Device

2.1.1 Introduction of I/O Device

RT-Thread provides a simple I/O device model framework, as shown in Figure 2-1. It is located between hardware

and applications and is divided into three layers. From top to bottom are the I/O device management layer, device

driver framework layer, device driver layer.

Figure 2-1 I/O device model framework

The application obtains the correct device driver through the I/O device management interface, and then interacts

data (or control) with the underlying I/O hardware device through this device driver.

The I/O device management layer encapsulates device drivers. Application programs access lower-layer devices

through standard interfaces provided by the I/O device layer. Upgrade or replacement of device drivers does not affect

upper-layer applications. In this way, the code related to the hardware operation of the device can exist independently

of the application program, and both parties only need to pay attention to the implementation of their own functions,

which reduces the coupling and complexity of the code and improves the reliability of the system.

The device driver framework layer is an abstraction of the same type of hardware device drivers. It extracts the same

parts from the same type of hardware device drivers from different manufacturers, and sets aside different parts for

the interface, which is implemented by the driver.

The device driver layer is a group of programs that drive hardware devices to work, and realize the function of

accessing hardware devices. It is responsible for creating and registering I/O devices. For devices with simple

operation logic, the device can be directly registered in the I/O device manager without going through the device

driver framework layer. Use the sequence diagram as shown in the figure below, mainly in the following two points:

Application

I/O device management interface

Character device

type
Block device type SPI bus type

SPI slave device

type
I2C bus type Other device types

Serial device driver

framework

SPI device driver

framework

I2C device driver

framework

PIN device driver

framework
...

STM32/NXP

serial driver

Various SPI

controller

drivers

SPI Flash driver
STM32/NXP

I2C driver

STM32/NXP

GPIO driver
...

Hardware

I/O device

management layer

Device driver

framework layer

Device driver layer

3/41

• The device driver creates a device instance with hardware access capability according to the device model

definition, and registers the device in the I/O device manager through the rt_device_register() interface.

• The application finds the device through the rt_device_find () interface and then uses the I/O device management

interface to access the hardware.

Figure 2-2 I/O device model framework

2.1.2 Create and Register I/O Device

The driver layer is responsible for creating device instances and registering them with the I/O device manager. Device

instances can be created statically or dynamically using the following interface:

rt_device_t rt_device_create(int type, int attach_size)

Parameter Describe

type Device type

attach_size User data size

return -

The device handle Success

RT_NULL Create failed, dynamic memory allocation failed

2.1.3 Access I/O Device

The application program accesses the hardware device through the I/O device management interface. After the device

driver is implemented, the application program can access the hardware. Figure 2-3 shows the mapping between the

I/O device management interface and the operation methods of the I/O device.

Application

Application

I/O device

manager

I/O device

manager

Device driver

Device driver

Find device rt_device_find()

Open device rt_device_open()

Read data rt_device_read()

Close device rt_device_close()

read()

Register I/O device

rt_device_register()
Create

device

4/41

Figure 2-3 I/O device interface

2.1.4 Find Device

The application obtains a device handle based on the device name so that it can operate the device. The find device

function looks like this:

rt_device_t rt_device_find(const char* name)

Parameter Describe

name Device name

return -

The device handle If a device is found, the device handle is returned

RT_NULL The corresponding device object was not found

2.1.5 Initialize Device

After obtaining the device handle, the application can initialize the device using the following function:

rt_err_t rt_device_init(rt_device_t dev)

Parameter Describe

dev The device handle

return -

RT_EOK The device is successfully initialized

Error code Device initialization failed

2.1.6 Open/Close Device

Through the device handle, the application can open and close the device. When the device is opened, it will detect

whether the device has been initialized. If it is not initialized, the initialization interface will be called by default to

initialize the device. Open the device with the following function:

rt_err_t rt_device_open(rt_device_t dev, rt_uint16_t oflags)

Parameter Describe

dev The device handle

rt_device_init()

rt_device_open()

rt_device_close()

rt_device_read()

rt_device_write()

rt_device_control()

init()

open()

close()

read()

write()

control()

Application Hardware

I/O device management

interface

I/O device opration

menthod

5/41

oflags The device opens the mode flag

return -

RT_EOK Device opened successfully

-RT_EBUSY

If the parameter specified when the device is registered includes the

RT_DEVICE_FLAG_STANDALONE parameter, the device will not be allowed

to open repeatedly

Other error codes Device failed to open

Close device by using the following function:

rt_err_t rt_device_close(rt_device_t dev)

Parameter Describe

dev The device handle

return -

RT_EOK Device close successfully

-RT_ERROR The device has been completely closed and cannot be closed repeatedly

Other error codes Failed to close device

2.1.7 Control Device

Through the command control word, the application program can also control the device through the following

function:

rt_err_t rt_device_control(rt_device_t dev, rt_uint8_t cmd, void* arg)

Parameter Describe

dev The device handle

cmd Command control word, which is usually associated with the device driver

arg Control parameter

return -

RT_EOK Function executed successfully

-RT_ENOSYS Execution failed, dev is empty

Other error codes Failed to execute

2.1.8 Read/Write Device

An application reading data from the device can be done with the following function:

rt_size_t rt_device_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)

Parameter Describe

dev The device handle

pos Read data offset

buffer Memory buffer pointer, the read data will be saved in the buffer

size The size of the read data

return -

The actual size of the data read
If it is a character device, the returned size is in byte, if it is a block device, the

returned size is in block

6/41

0 You need to read the current thread's errno to determine the error status

To write data to the device, you can use the following function:

rt_size_t rt_device_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)

Parameter Describe

dev The device handle

pos Write data offset

buffer Memory buffer pointer, where the data to be written is placed

size The size of the written data

return -

The actual size of the data to be written
If it is a character device, the returned size is in byte, if it is a block device, the

returned size is in block

0 You need to read the current thread's errno to determine the error status

2.1.9 Data Sending and Receiving Callback

When the hardware device receives data, the following function can call back another function to set the data

reception indication, and notify the upper-layer application thread that data arrives:

rt_err_t rt_device_set_rx_indicate(rt_device_t dev, rt_err_t (*rx_ind)(rt_device_t dev, rt_size_t size)

Parameter Describe

dev The device handle

rx_ind Callback function pointer

return -

RT_EOK Set successfully

The callback function for this function is provided by the caller. When the hardware device receives data, it will call

back this function and pass the received data length in the size parameter to the upper-layer application. The upper

application thread should read data from the device immediately after receiving the instruction.

When the application calls rt_device_write() to write data, if the underlying hardware can support automatic sending,

the upper-layer application can set a callback function. This callback function will be called after the underlying

hardware data transmission is completed (such as when the DMA transfer is completed or when the FIFO has been

written and a completion interrupt is generated). You can set the device to send the completion indication through the

following function:

rt_err_t rt_device_set_tx_complete(rt_device_t dev, rt_err_t (*tx_done)(rt_device_t dev,void *buffer))

Parameter Describe

dev The device handle

tx_done Callback function pointer

return -

RT_EOK Set successfully

When this function is called, the callback function is provided by the caller. When the hardware device finishes

sending data, the driver calls back this function and passes the address buffer of the data block that has been sent as

a parameter to the upper-layer application. When the upper-layer application (thread) receives the instruction, it will

release the buffer memory block or use it as the buffer for the next write data according to the situation of sending

7/41

the buffer.

8/41

2.2 PIN Device

2.2.1 Introduction of PIN

The pins on the chip are generally divided into 4 categories: power supply, clock, control and I/O. The I/O port is

divided into General Purpose Input Output (general purpose input/output) in the usage mode, referred to as GPIO,

which is multiplexed with functions I/O (eg SPI/I2C/UART, etc.).

Most MCU pins have more than one function. Different pins have different internal structures and different functions.

The actual function of the pin can be switched with different configurations. The general I/O port has the following

features:

Programmable control interrupt: the interrupt trigger mode can be configured, as shown in Figure 2-4:

Figure 2-4 PIN interrupt trigger mode

The input and output mode can be controlled.

Output mode generally includes: push-pull, open drain, pull-up, pull-down. When the pin is in output mode, the

connected peripheral device can be controlled by configuring the level state of the pin output to be high or low.

Input modes generally includes: floating, pull-up, pull-down and analog. When the pin is in input mode, the level

state of the pin can be read, i.e. high level or low level.

2.2.2 Access PIN Device

The application accesses GPIO through the PIN device management interface provided by RT-Thread. The relevant

interfaces are as follows:

Function Describe

rt_pin_mode() Set pin mode

rt_pin_write() Set pin level

rt_pin_read() Read pin level

Rising edge trigger: used to detect

the rising edge without jitter

Falling edge trigger: used to detect

the falling edge without jitter

High level trigger: used to detect

high level state

Low level trigger: used to detect

low level state

Double edge trigger: used to detect

both edges without jitter

9/41

rt_pin_attach_irq() Bind pin interrupt callback function

rt_pin_irq_enable() Enable pin interrupt

rt_pin_detach_irq() Breakout pin interrupt callback function

2.2.3 Set Pin Mode

The input or output mode of the pin should be set before it is used. This can be done by using the following function:

void rt_pin_mode(rt_base_t pin, rt_base_t mode)

Parameter Describe

pin Pin number

mode Pin worke mode

2.2.4 Set Pin Level

The function to set the pin output level is as follows:

void rt_pin_write(rt_base_t pin, rt_base_t value)

Parameter Describe

pin Pin number

value
Logical level value, which can be one of two macro definition values: PIN_LOW

low level or PIN_HIGH high level

2.2.5 Read Pin Level

The function for reading pin levels is as follows:

int rt_pin_read(rt_base_t pin)

Parameter Describe

pin Pin number

return -

PIN_LOW Low level

PIN_HIGH High level

2.2.6 Bind Pin Interrupt Callback Function

To use the interrupt function of a pin, you can use the following function to configure a pin as an interrupt trigger

mode and bind an interrupt callback function to the corresponding pin. When the pin interrupt occurs, the callback

function will be executed:

rt_err_t rt_pin_attach_irq(rt_int32_t pin, rt_uint32_t mode, void (*hdr)(void *args), void *args)

Parameter Describe

pin Pin number

mode Interrupt trigger mode

hdr Interrupt the callback function, which needs to be defined by the user

args The parameter of the interrupt callback function, set to RT_NULL if not needed

return -

10/41

RT_EOK Binding success

Error code Binding failed

2.2.7 Enable Pin Interrupt

After binding the pin interrupt callback, use the following function to enable pin interrupt:

rt_err_t rt_pin_irq_enable(rt_base_t pin, rt_uint32_t enabled)

Parameter Describe

pin Pin number

enabled PIN_IRQ_ENABLE (enabled) or PIN_IRQ_DISABLE (disabled)

return -

RT_EOK Enable success

Error code Enable failed

2.2.8 Breakout Pin Interrupt Callback Function

You can use the following function to breakout pin interrupt callback function:

rt_err_t rt_pin_detach_irq(rt_int32_t pin)

Parameter Describe

pin Pin number

return -

RT_EOK Breakout success

Error code Breakout failed

11/41

2.3 SPI Device

2.3.1 Introduction of SPI

SPI (Serial Peripheral Interface) is a high-speed, full-duplex, synchronous communication bus, often used for short

distance communication. SPI generally uses four wires for communication, as shown in Figure 2-5:

Figure 2-5 SPI communication

SPI Master

SCLK

MOSI

MISO

CS

 SPI Slave

SCLK

MOSI

MISO

CS

◼ MOSI: SPI bus master output/slave input data wire.

◼ MISO: SPI bus master input/slave output data wire.

◼ SCLK: serial clock wire. The master device outputs clock signal to the slave device.

◼ CS: slave device select wire (Chip select). Also called SS, CSB, CSN, EN, etc., the master device outputs the

chip select signal to the slave device

SPI works in a master-slave mode, usually with one master and one or more slaves. The communication is initiated

by the master device, the master device selects the slave device to be communicated through CS, and then provides

a clock signal to the slave device through SCLK, the data is output to the slave device through MOSI, and the data

sent by the slave device is received through MISO at the same time.

As shown in Figure 2-6, the chip has two SPI controllers. The SPI controller corresponds to the SPI master device.

Each SPI controller can connect to multiple SPI slave devices. Slave devices mounted on the same SPI controller

share 3 signal pins: SCK, MISO, MOSI, but the CS pin of each slave device is independent.

12/41

Figure 2-6 SPI controller-

The master device selects the slave device by controlling the CS pin, which is generally active at low level. Only one

CS pin on an SPI master device is in a valid state at any one time, and the slave device connected to this valid CS pin

can communicate with the master device at this time.

2.3.2 Mount SPI Device

The SPI device needs to be mounted to the registered SPI bus.

rt_err_t rt_spi_bus_attach_device(struct rt_spi_device *device,

const char *name,

const char *bus_name,

void *user_data)

Parameter Describe

device SPI device handle

name SPI device name

bus_name SPI bus name

user_data User data pointer

return -

RT_EOK Success

Other error codes Failed

This function is used to mount an SPI device to the specified SPI bus, register the SPI device with the kernel, and

save user_data to the SPI device control block.

 MCU

SPI controller 0

SPI controller 1

dev0 dev1

dev2 dev3

CS0 CS1

CS2 CS3

13/41

Generally, the SPI bus is named spix, and the SPI device is named spixy. For example, SPI10 indicates the device 0

mounted on the SPI1 bus. User_data is generally the CS pin pointer of the SPI device. The SPI controller will operate

this pin for chip selection during data transmission.

Mount the SPI device to the bus using the following function:

rt_err_t rt_hw_spi_device_attach(const char *bus_name,

const char *device_name,

GPIO_TypeDef *cs_gpiox,

uint16_t cs_gpio_pin)

2.3.3 Configuring SPI Device

After mounting an SPI device to the SPI bus, you need to set transmission parameters for the SPI device.

rt_err_t rt_spi_configure(struct rt_spi_device *device, struct rt_spi_configuration *cfg)

Parameter Describe

device SPI device handle

cfg SPI configuration parameter pointer

return -

RT_EOK Success

This function will save the configuration parameters pointed to by cfg in the control block of the SPI device, which

will be used when transferring data. The prototype of struct rt_spi_configuration is as follows:

struct rt_spi_configuration

{

 rt_uint8_t mode; // mode

 rt_uint8_t data_width; // data width, 8 bits, 16 bits, 32 bits

 rt_uint16_t reserved; // reserved

 rt_uint32_t max_hz; // maximum frequency

};

2.3.4 Access SPI Device

In general, the SPI device of the MCU is used as a master and a slave to communicate. In RT-Thread, the SPI master

is virtualized as an SPI bus device. The application uses the SPI device management interface to access the SPI slave

device. The main interface is as follows:

Function Describe

rt_device_find() Obtain a device handle based on the SPI device name

rt_spi_transfer_message() Customize transmission data

rt_spi_transfer() Transfer data once

rt_spi_send() Send data once

rt_spi_recv() Receive data once

rt_spi_send_then_send() Send twice in a row

rt_spi_send_then_recv() Send first, then receive

14/41

2.3.5 Find SPI Device

Before using the SPI device, the device handle should be obtained according to the name of the SPI device, and then

the SPI device can be operated. The device find function is shown as follows:

rt_device_t rt_device_find(const char* name)

Parameter Describe

name Device name

return -

Device handle If a device is found, the device handle is returned

RT_NULL The corresponding device object was not found

2.3.6 Customize Transmission Data

After obtaining the SPI device handle, you can use the SPI device management interface to access the SPI device

and send and receive data. Messages can be transferred using the following function:

struct rt_spi_message *rt_spi_transfer_message(struct rt_spi_device *device,struct rt_spi_message *message)

Parameter Describe

device SPI device handle

message Message pointer

return -

RT_NULL Successfully sent

non-null pointer Send failed, return pointer to remaining unsent message

This function can transmit a string of messages. The user can customize the values of each parameter of the message

structure to be transmitted, which makes it easy to control the data transmission mode. struct rt_spi_message

prototype:

struct rt_spi_message

{

 const void *send_buf; // Send buffer pointer

 void *recv_buf; // Receive buffer pointer

 rt_size_t length; // Number of bytes of data sent/received

 struct rt_spi_message *next; // A pointer to the next message

 unsigned cs_take : 1; // Select

 unsigned cs_release : 1; // Release

};

sendbuf is the send buffer pointer, and when its value is RT_NULL, it means that the current transmission is in a

receive-only state, and no data needs to be sent.

recvbuf is the pointer to the receive buffer. When its value is RT_NULL, it means that this transmission is in a send-

only state, and the received data does not need to be saved, so the received data is discarded directly.

The unit of length is word, that is, when the data length is 8 bits, each length occupies 1 byte; when the data length

is 16 bits, each length occupies 2 bytes.

The parameter next is a pointer to the next message to be sent. If only one message is sent, the value of this pointer

15/41

is RT_NULL. Multiple messages to be transmitted are connected together in the form of a singly linked list through

the next pointer.

When the value of cs_take is 1, it means that the corresponding CS is set to a valid state before transmitting data.

When the value of cs_release is 1, it means that the corresponding CS will be released after the data transmission

ends.

2.3.7 Transfer Data Once

If the data is transmitted only once, the following function can be used:

rt_size_t rt_spi_transfer(struct rt_spi_device *device, const void *send_buf, void *recv_buf, rt_size_t length)

Parameter Describe

device SPI device handle

send_buf Send data buffer pointer

recv_buf Receive data buffer pointer

length Number of bytes of data sent/received

return -

0 Transfer failed

Non-zero value Number of bytes successfully transferred

This function is equivalent to calling rt_spi_transfer_message() to transfer a message. The chip selection is selected

when the data is sent, and the chip selection is released when the function returns. The message parameter

configuration is as follows:

struct rt_spi_message msg;

msg.send_buf = send_buf;

msg.recv_buf = recv_buf;

msg.length = length;

msg.cs_take = 1;

msg.cs_release = 1;

msg.next = RT_NULL;

2.3.8 Send Data Once

If the data is sent only once and the received data is ignored, the following function can be used:

rt_size_t rt_spi_send(struct rt_spi_device *device, const void *send_buf, rt_size_t length)

Parameter Describe

device SPI device handle

send_buf Send data buffer pointer

length Number of bytes of sent data

return -

0 Send failed

Non-zero value Number of bytes successfully sent

Call this function to send the data of the buffer pointed to by send_buf, ignoring the received data, this function is the

16/41

encapsulation of the rt_spi_transfer() function.

This function is equivalent to calling rt_spi_transfer_message() to transfer a message. The chip select is selected

when data is sent, and the chip select is released when the function returns. The message parameter is configured as

follows:

struct rt_spi_message msg;

msg.send_buf = send_buf;

msg.recv_buf = RT_NULL;

msg.length = length;

msg.cs_take = 1;

msg.cs_release = 1;

msg.next = RT_NULL;

2.3.9 Receive Data Once

If the data is received only once, the following function can be used:

rt_size_t rt_spi_recv(struct rt_spi_device *device, void *recv_buf, rt_size_t length)

Parameter Describe

device SPI device handle

recv_buf Receive data buffer pointer

length Number of bytes of received data

return -

0 Receive failed

Non-zero value Number of bytes successfully received

Call this function to receive data and save it to the buffer pointed to by recv_buf. This function is a wrapper around

the rt_spi_transfer() function. The SPI bus protocol stipulates that the clock can only be generated by the master

device, so when receiving data, the master device will send data 0XFF.

This function is equivalent to calling rt_spi_transfer_message() to transfer a message, the chip select is selected when

it starts to receive data, and the chip select is released when the function returns. The message parameter is configured

as follows:

struct rt_spi_message msg;

msg.send_buf = RT_NULL;

msg.recv_buf = recv_buf;

msg.length = length;

msg.cs_take = 1;

msg.cs_release = 1;

msg.next = RT_NULL;

2.3.10 Send Data Twice in a Row

If you need to send the data of 2 buffers in succession, and the middle chip selection is not released, you can call the

17/41

following function:

rt_err_t rt_spi_send_then_send(struct rt_spi_device *device,

 const void *send_buf1,

 rt_size_t send_length1,

 const void *send_buf2,

 rt_size_t send_length2)

Parameter Describe

device SPI device handle

send_buf1 Send data buffer 1 pointer

send_length1 Send data buffer 1 data bytes

send_buf2 Send data buffer 2 pointer

send_length2 Send data buffer 2 data bytes

return -

RT_EOK Send success

-RT_EIO Send failed

This function can send two buffers in a row, ignore the received data, the chip select is selected when send_buf1 is

sent, and the chip select is released after send_buf2 is sent.

This function is used to write a piece of data to the SPI device. The first time it sends the command and address data,

and the second time it sends the specified length of data. The reason why it is sent twice instead of combined into

one data block, or called rt_spi_send() twice, is because in most data write operations, the command and address

need to be sent first, and the length is generally only a few bytes. If it is sent together with the following data, memory

space application and a large amount of data handling will be required. If rt_spi_send() is called twice, the chip select

will be released after the command and address are sent. Most SPI devices rely on setting the chip select to be valid

once as the start of the command, therefore, the chip select is released after sending the command or address data,

and the operation is discarded.

This function is equivalent to calling rt_spi_transfer_message() to transfer two messages. The message parameter

configuration is as follows:

struct rt_spi_message msg1, msg2;

msg1.send_buf = send_buf1;

msg1.recv_buf = RT_NULL;

msg1.length = send_length1;

msg1.cs_take = 1;

msg1.cs_release = 0;

msg1.next = &msg2;

msg2.send_buf = send_buf2;

msg2.recv_buf = RT_NULL;

msg2.length = send_length2;

msg2.cs_take = 0;

msg2.cs_release = 1;

msg2.next = RT_NULL;

18/41

2.3.11 Send First, Then Receive

If you need to send data to the slave device first, and then receive the data sent from the slave device, and the

intermediate chip selection is not released, you can call the following function:

rt_err_t rt_spi_send_then_recv(struct rt_spi_device *device,

 const void *send_buf,

 rt_size_t send_length,

 void *recv_buf,

 rt_size_t recv_length)

Parameter Describe

device SPI slave device handle

send_buf Send data buffer pointer

send_length Send data buffer data bytes

recv_buf Receive data buffer pointer

recv_length Received data bytes

return -

RT_EOK Success

-RT_EIO Failed

This function starts chip selection when sending the first piece of data send_buf, at this time ignores the received

data, and then sends the second piece of data, at this time the master device will send the data 0XFF, the received

data is stored in recv_buf, and release the chip select when the function returns.

This function is suitable for reading a piece of data from the SPI slave device. For the first time, some commands and

address data will be sent first, and then the data of the specified length will be received.

This function is equivalent to calling rt_spi_transfer_message() to transfer two messages. The message parameter

configuration is as follows:

struct rt_spi_message msg1, msg2;

msg1.send_buf = send_buf;

msg1.recv_buf = RT_NULL;

msg1.length = send_length;

msg1.cs_take = 1;

msg1.cs_release = 0;

msg1.next = &msg2;

msg2.send_buf = RT_NULL;

msg2.recv_buf = recv_buf;

msg2.length = recv_length;

msg2.cs_take = 0;

msg2.cs_release = 1;

msg2.next = RT_NULL;

The SPI device management module also provides rt_spi_sendrecv8() and rt_spi_sendrecv16() functions, both of

19/41

which are encapsulations of this function, rt_spi_sendrecv8() sends one byte of data and receives one byte of data,

rt_spi_sendrecv16() send 2 bytes of data and receive 2 bytes of data.

2.3.12 Special Application Scenario

In some special usage scenarios, a device wants to monopolize the bus for a period of time, and during this period,

the chip selection must be kept valid, and the data transmission may be intermittent during this period, you can use

the relevant interface according to the steps shown. The data transfer function must use rt_spi_transfer_message(),

and the chip select control fields cs_take and cs_release of each message to be transferred in this function must be

set to 0, because the chip select has already used other interface control, and does not need to be controlled during

data transmission. .

2.3.13 Get the Bus

In the case of multi-threading, the same SPI bus may be used in different threads. In order to prevent the loss of

data being transmitted by the SPI bus, the slave device needs to obtain the right to use the SPI bus before starting to

transmit data, only after the acquisition is successful, the bus can be used to transmit data. The following function

can be used to acquire the SPI bus:

rt_err_t rt_spi_take_bus(struct rt_spi_device *device)

Parameter Describe

device SPI device handle

return -

RT_EOK Success

Error code Failed

2.3.14 Select Chip Select

After obtaining the right to use the bus from the device, you need to set the corresponding chip select signal to be

valid. You can use the following function to select the chip select:

rt_err_t rt_spi_take(struct rt_spi_device *device)

Parameter Describe

device SPI device handle

return -

0 Success

Error code Failed

2.3.15 Add a Message

When rt_spi_transfer_message() is used to transfer messages, all the messages to be transferred are linked in a one-

way list. You can add a new message to the list by using the following function:

void rt_spi_message_append(struct rt_spi_message *list, struct rt_spi_message *message)

Parameter Describe

list The node of the linked list of messages to be transmitted

20/41

message New message pointer

2.3.16 Release Chip Select

After the slave data transmission is completed, the chip selection needs to be released. The following function can be

used to release the chip selection:

rt_err_t rt_spi_release(struct rt_spi_device *device)

Parameter Describe

device SPI device handle

return -

0 Success

Error code Failed

2.3.17 Release the Bus

The slave device is not using the SPI bus to transfer data. The bus must be released as soon as possible so that other

slave devices can use the SPI bus to transfer data. The bus can be released using the following function:

rt_err_t rt_spi_release_bus(struct rt_spi_device *device)

Parameter Describe

device SPI device handle

return -

RT_EOK Success

21/41

2.4 UART Device

2.4.1 Introduction of UART

Universal Asynchronous Receiver/Transmitter (UART), as a kind of asynchronous serial communication protocol,

works by transmitting each character of the transmitted data bit by bit. It is the most frequently used data bus during

application development.

2.4.2 Access Serial Port Device

Applications access serial port hardware through the I/O device management interfaces provided by RT-Thread. The

interfaces are as follows:

Function Describe

rt_device_find() Find device

rt_device_open() Open device

rt_device_read() Read data

rt_device_write() Write data

rt_device_control() Control device

rt_device_set_rx_indicate() Set the receive callback function

rt_device_set_tx_complete() Set the send completion callback function

rt_device_close() Close device

2.4.3 Find Serial Port Device

The application program obtains the device handle according to the serial device name, and then can operate the

serial device. The find device function is shown below.

rt_device_t rt_device_find(const char* name)

Parameter Describe

name Device name

return -

The device handle If a device is found, the device handle is returned

RT_NULL The corresponding device object was not found

2.4.4 Open Serial Port Device

Through the device handle, the application can open and close the device. When the device is opened, it will detect

whether the device has been initialized. If it is not initialized, the initialization interface will be called by default to

initialize the device. Open the device with the following function:

rt_err_t rt_device_open(rt_device_t dev, rt_uint16_t oflags)

Parameter Describe

dev The device handle

oflags Device mode flag

22/41

return -

RT_EOK Device opened successfully

-RT_EBUSY

If the parameter specified when the device is registered includes the

RT_DEVICE_FLAG_STANDALONE parameter, the device will not be allowed to

open repeatedly

Other error codes Device open failed

The oflags parameter supports the following values (multiple values can be supported in the form of OR):

#define RT_DEVICE_FLAG_STREAM 0x040 /* Stream mode */

/* Receive mode parameter */

#define RT_DEVICE_FLAG_INT_RX 0x100 /* Interrupt receive mode */

#define RT_DEVICE_FLAG_DMA_RX 0x200 /* DMA receive mode */

/* Send mode parameter */

#define RT_DEVICE_FLAG_INT_TX 0x400 /* Interrupt send mode */

#define RT_DEVICE_FLAG_DMA_TX 0x800 /* DMA send mode */

There are three modes of serial port data receiving and sending data: interrupt mode, polling mode, and DMA mode.

When in use, only one of these three modes can be selected. If the open parameter oflags of the serial port does not

specify the use of interrupt mode or DMA mode, the polling mode is used by default.

DMA (Direct Memory Access) means direct memory access. The DMA transmission method does not require the

CPU to directly control the transmission, nor does it have the process of retaining the scene and restoring the scene

like the interrupt processing method. A direct data transfer path is opened up for RAM and I/O devices through the

DMA controller, which saves CPU resources for other operations. Using DMA transfers can continuously acquire or

send a piece of information without interruption or delay, which is very useful when communication is frequent or

when there are large pieces of information to transfer.

2.4.5 Control Serial Port Device

Through the control interface, the application program can configure the serial port device, such as baud rate, data

bit, check bit, receive buffer size, stop bit and other parameters modification. The control function is as follows:

rt_err_t rt_device_control(rt_device_t dev, rt_uint8_t cmd, void* arg)

Parameter Describe

dev The device handle

cmd Command control word, available value:RT_DEVICE_CTRL_CONFIG

arg Control parameter, available type: struct serial_configure

return -

RT_EOK Function executed successfully

-RT_ENOSYS Execution failed, dev is empty

Other error codes Execution failed

The prototype of the control parameter structure struct serial_configure is as follows:

struct serial_configure

23/41

{

 rt_uint32_t baud_rate; /* Baud rate */

 rt_uint32_t data_bits :4; /* Data bits */

 rt_uint32_t stop_bits :2; /* Stop bit */

 rt_uint32_t parity :2; /* Parity bit */

 rt_uint32_t bit_order :1; /* The high value is in front or the low value is in front */

 rt_uint32_t invert :1; /* Mode */

 rt_uint32_t bufsz :16; /* Receive data buffer size */

 rt_uint32_t reserved :4; /* Reserved bit */

};

The default serial port configuration provided by RT-Thread is as follows, that is, each serial port device in the RT-

Thread system uses the following configuration by default:

#define RT_SERIAL_CONFIG_DEFAULT \

{ \

 BAUD_RATE_115200, /* 115200 bits/s */ \

 DATA_BITS_8, /* 8 data bits */ \

 STOP_BITS_1, /* 1 stop bit */ \

 PARITY_NONE, /* No parity */ \

 BIT_ORDER_LSB, /* LSB first sent */ \

 NRZ_NORMAL, /* Normal mode */ \

 RT_SERIAL_RB_BUFSZ, /* Buffer size */ \

 0 \

}

If the actual configuration parameters of the serial port are inconsistent with the default configuration parameters, the

user can modify them through the application code. Modify serial port configuration parameters, such as baud rate,

data bits, parity bits, buffer receiving buffsize, stop bits, etc.

2.4.6 Send Data

To write data to the serial port, you can use the following function:

rt_size_t rt_device_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)

Parameter Describe

dev The device handle

pos Write data offset, this parameter is not used by serial device

buffer Memory buffer pointer, where the data to be written is placed

size The size of the written data

return -

The actual size of the data to be written If it is a character device, the return size is in byte

0 You need to read the current thread's errno to determine the error status

2.4.7 Set the Send Completion Callback Function

When the application calls rt_device_write() to write data, if the underlying hardware can support automatic sending,

24/41

the upper-layer application can set a callback function. This callback function will be called after the underlying

hardware data transmission is completed (such as when the DMA transfer is completed or when the FIFO has been

written and a completion interrupt is generated). You can set the device to send the completion indication through the

following function:

rt_err_t rt_device_set_tx_complete(rt_device_t dev, rt_err_t (*tx_done)(rt_device_t dev, void *buffer))

Parameter Describe

dev The device handle

tx_done Callback function pointer

return -

RT_EOK Set successfully

When this function is called, the callback function is provided by the caller. When the hardware device finishes

sending data, the device driver will call back this function and pass the sent data block address buffer as a parameter

to the upper-layer application. When the upper-layer application (thread) receives the instruction, it will release the

buffer memory block or use it as the buffer for the next write data according to the situation of sending the buffer.

2.4.8 Set the Receive Callback Function

The data receiving indication can be set by the following function. When the serial port receives data, it notifies the

upper application thread that data arrives:

rt_err_t rt_device_set_rx_indicate(rt_device_t dev, rt_err_t (*rx_ind)(rt_device_t dev, rt_size_t size))

Parameter Describe

dev The device handle

rx_ind Callback function pointer

dev Device handle (callback function parameter)

size Buffer data size (callback function parameter)

return -

RT_EOK Set successfully

The callback function for this function is provided by the caller. If the serial port is opened in the interrupt receiving

mode, when the serial port receives a data and generates an interrupt, the callback function will be called, and the

data size of the buffer at this time will be placed in the size parameter, and the serial port device handle will be placed

in the dev parameter for the caller to obtain.

If the serial port is opened in DMA receive mode, this callback function will be called when DMA finishes receiving

a batch of data.

In general, the receive callback function can send a semaphore or event to notify the serial port data processing thread

that data arrives.

2.4.9 Receive Data

The following function can be called to read the data received by the serial port:

rt_size_t rt_device_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)

25/41

2.4.10 Close Serial Port Device

When the application completes the serial port operation, the serial port device can be closed by the following

function:

rt_err_t rt_device_close(rt_device_t dev)

Parameter Describe

dev The device handle

return -

RT_EOK Close the device successfully

-RT_ERROR The device has been closed and cannot be closed repeatedly

Other error codes Failed to close device

26/41

2.5 I2C Device

2.5.1 Introduction of I2C

The I2C (Inter Integrated Circuit) bus is a half-duplex, bidirectional two-wire synchronous serial bus developed by

PHILIPS. When the I2C bus transmits data, only two signal lines are needed, one is a bidirectional data line SDA

(serial data), and the other is a bidirectional clock line SCL (serial clock). The SPI bus has two lines for receiving

data and sending data between the master and slave devices, while the I2C bus only uses one line for data transmission

and reception.

I2C works in the same master-slave mode as SPI, which is different from the one-master-multiple-slave structure of

SPI. It allows multiple master devices to exist at the same time. Each device connected to the bus has a unique address,

and the master device starts data transmission. And generate a clock signal, the slave device is addressed by the

master device, and only one master device is allowed at the same time.

2.5.2 Access I2C bus device

In general, the I2C device of the MCU is used as a master and a slave to communicate. In RT-Thread, the I2C master

is virtualized as an I2C bus device, and the I2C slave communicates with the I2C bus through the I2C device interface.

The relevant interfaces are as follows:

Function Describe

rt_device_find() Obtain the device handle based on the I2C bus device name

rt_i2c_transfer() Transfer data

2.5.3 Find I2C bus device

Before using the I2C bus device, you need to obtain the device handle according to the I2C bus device name, and

then you can operate the I2C bus device. The function to find the device is as follows:

rt_device_t rt_device_find(const char* name)

Parameter Describe

name I2C bus device name

return -

The device handle Find the corresponding device will return the corresponding device handle

RT_NULL The corresponding device object was not found

2.5.4 Data transfer

After getting the I2C bus device handle, you can use rt_i2c_transfer() for data transfer. The function prototype

looks like this:

rt_size_t rt_i2c_transfer(struct rt_i2c_bus_device *bus, struct rt_i2c_msg msgs[], rt_uint32_t num)

Parameter Describe

bus I2C bus device handle

msgs[] Pointer to an array of messages to transmit

27/41

num The number of elements in the message array

return -

The number of elements in the message array Success

Error code Failed

Like the custom transmission interface of the SPI bus, the data transmitted by the custom transmission interface of

the I2C bus is also based on a message. The parameter msgs[] points to the message array to be transmitted, and the

user can customize the content of each message to implement 2 different data transmission modes supported by the

I2C bus. If the master needs to send a repeat start condition, it needs to send 2 messages.

The prototype of the I2C message data structure is as follows:

struct rt_i2c_msg

{

 rt_uint16_t addr; /* Slave address */

 rt_uint16_t flags; /* Read, write flag, etc. */

 rt_uint16_t len; /* Read and write data bytes */

 rt_uint8_t *buf; /* Read/write data buffer pointer */

}

Slave address addr: supports 7-bit and 10-bit binary addresses, please check the data sheet of different devices.

28/41

2.6 ADC device

2.6.1 Introduction of ADC

ADC(analog-to-digital converter) refers to an analog-to-digital converter. A device that converts continuously

changing analog signals into discrete digital signals. Real-world analog signals, such as temperature, pressure, sound

or images, need to be converted into digital forms that are easier to store, process and transmit. Analog-to-digital

converters can achieve this function and can be found in a variety of different products. The corresponding

DAC(digital-to-analog converter) is the reverse process of ADC analog-to-digital conversion. ADC was originally

used to convert wireless signals to digital signals. Such as television signals, long and short broadcast radio send and

receive.

2.6.2 Access ADC Device

The application accesses the ADC hardware through the ADC device management interface provided by RT-Thread.

The relevant interfaces are as follows:

Function Describe

rt_device_find() Obtain device handle based on ADC device name

rt_adc_enable() Enable the ADC device

rt_adc_read() Read ADC device data

rt_adc_disable() Close ADC device

2.6.3 Find ADC Device

The application obtains the device handle according to the ADC device name, and then can operate the ADC device.

The function to find the device is as follows:

rt_device_t rt_device_find(const char* name)

Parameter Describe

name ADC device name

return -

The device handle If a device is found, the device handle is returned

RT_NULL No device found

2.6.4 Enable ADC Channel

Before reading ADC device data, you need to enable the device first, and enable the device through the following

function:

rt_err_t rt_adc_enable(rt_adc_device_t dev, rt_uint32_t channel)

Parameter Describe

dev ADC device handle

channel The ADC channel

return -

29/41

RT_EOK Success

-RT_ENOSYS Failed. Device operation method is empty

Other error codes Failed

2.6.5 Read ADC Channel Sampling Value

Reading the ADC channel sample value can be done by the following function:

rt_uint32_t rt_adc_read(rt_adc_device_t dev, rt_uint32_t channel)

Parameter Describe

dev ADC device handle

channel The ADC channel

return -

Value read

2.6.6 Close ADC Channel

Closing the ADC channel can be done with the following function:

rt_err_t rt_adc_disable(rt_adc_device_t dev, rt_uint32_t channel)

Parameter Describe

dev ADC device handle

channel The ADC channel

return -

RT_EOK Success

-RT_ENOSYS Failed. Device operation method is empty

Other error codes Failed

30/41

2.7 DAC device

2.7.1 Introduction of DAC

Digital-to-analog converter (DAC). It refers to a device that converts discrete digital signals in the form of binary

digital quantities into continuously changing analog signals. In the digital world, it is not easy to deal with unstable

and dynamic analog signals. Based on the characteristics of DAC, it can be found in various products. The

corresponding ADC (Analog-to-Digital Converter)), which is the reverse process of DAC digital-to-analog

conversion. DACs are mainly used in audio amplification, video encoding, motor control, digital potentiometers, etc.

2.7.2 Access DAC Device

The application accesses the DAC hardware through the DAC device management interface provided by RT-Thread.

The relevant interfaces are as follows:

Function Describe

rt_device_find() Obtain the device handle based on the DAC device name

rt_dac_enable() Enable the DAC device

rt_dac_write() Set DAC device output value

rt_dac_disable() Close DAC device

2.7.3 Find DAC Device

The application obtains the device handle according to the DAC device name, and then can operate the DAC device.

The function of finding the device is as follows:

rt_device_t rt_device_find(const char* name)

Parameter Describe

name DAC device name

return -

The device handle If a device is found, the device handle is returned

RT_NULL No device found

2.7.4 Enable DAC Channel

Before setting the DAC device data, you need to enable the device first, and enable the device through the following

function:

rt_err_t rt_dac_enable(rt_dac_device_t dev, rt_uint32_t channel)

Parameter Describe

dev DAC device handle

channel DAC channel

return -

RT_EOK Success

-RT_ENOSYS Failed. Device operation method is empty

31/41

Other error codes Failed

2.7.5 Set DAC Channel Output Value

Setting the DAC channel output value can be done with the following function:

rt_uint32_t rt_dac_write(rt_dac_device_t dev, rt_uint32_t channel, rt_uint32_t value)

Parameter Describe

dev DAC device handle

channel DAC channel

value DAC output value

return -

RT_EOK Success

-RT_ENOSYS Failed

2.7.6 Close DAC Channel

Closing the DAC channel can be done with the following function:

rt_err_t rt_dac_disable(rt_dac_device_t dev, rt_uint32_t channel)

Parameter Describe

dev DAC device handle

channel DAC channel

return -

RT_EOK Success

-RT_ENOSYS Failed. Device operation method is empty

Other error codes Failed

32/41

2.8 CAN Device

2.8.1 Introduction of CAN

CAN is the abbreviation of Controller Area Network (CAN). It was developed by BOSCH, A German company

famous for its research and development and production of automotive electronic products, and eventually became

an international standard (ISO 11898). It is one of the most widely used field buses in the world.

2.8.2 Access CAN Device

The application program accesses the CAN hardware controller through the I/O device management interface

provided by RT-Thread. The relevant interfaces are as follows:

Function Describe

rt_device_find Find device

rt_device_open Open device

rt_device_read Read data

rt_device_write Write data

rt_device_control Control device

rt_device_set_rx_indicate Set the receive callback function

rt_device_close Close device

2.8.3 Find CAN Device

The application finds the device according to the name of the CAN device to obtain the device handle, and then can

operate the CAN device. The function of finding the device is as follows:

rt_device_t rt_device_find(const char* name)

Parameter Describe

name Device name

return -

The device handle Find the corresponding device will return the corresponding device handle

RT_NULL The corresponding device object was not found

2.8.4 Open CAN Device

Through the device handle, the application can open and close the device. When the device is opened, it will detect

whether the device has been initialized. If it is not initialized, the initialization interface will be called by default to

initialize the device. Open the device with the following function:

rt_err_t rt_device_open(rt_device_t dev, rt_uint16_t oflags)

Parameter Describe

dev The device handle

oflags Open device mode flag

return -

33/41

RT_EOK Device opened successfully

-RT_EBUSY

If the parameter specified when the device is registered includes the

RT_DEVICE_FLAG_STANDALONE parameter, the device will not be allowed to

open repeatedly

Other error codes Device failed to open

2.8.5 Control CAN Device

Through the command control word, the application program can configure the CAN device through the following

function:

rt_err_t rt_device_control(rt_device_t dev, rt_uint8_t cmd, void* arg)

Parameter Describe

dev The device handle

cmd Control command

arg Control parameter

return -

RT_EOK Function executed successfully

Other error codes Failed to execute

2.8.6 Send Data

Sending data using a CAN device can be done through the following function:

rt_size_t rt_device_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)

Parameter Describe

dev The device handle

pos Write data offset. This parameter is not used by the CAN device

buffer CAN message pointer

size CAN message size

return -

Is not zero The actual size of the CAN message sent

0 Send failed

2.8.7 Set Receive Callback Function

The data reception indication can be set by the following function. When CAN receives data, it notifies the upper

application thread that data arrives:

rt_err_t rt_device_set_rx_indicate(rt_device_t dev, rt_err_t (*rx_ind)(rt_device_t dev, rt_size_t size))

Parameter Describe

dev The device handle

rx_ind Callback function pointer

dev Device handle (callback function parameter)

size Buffer data size (callback function parameter)

return -

34/41

RT_EOK Set successfully

2.8.8 Receive Data

The following function can be called to read the data received by the CAN device:

rt_size_t rt_device_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)

Parameter Describe

dev The device handle

pos Read data offset. This parameter is not used by the CAN device

buffer CAN message pointer, the read data will be stored in the buffer

size CAN message size

return -

Is not zero CAN message size

0 Failed

2.8.9 Close CAN Device

When the application completes the CAN operation, the CAN device can be closed by the following function:

rt_err_t rt_device_close(rt_device_t dev)

Parameter Describe

dev The device handle

return -

RT_EOK Close device successfully

-RT_ERROR The device has been completely closed and cannot be closed repeatedly

Other error codes Close device failed

35/41

2.9 HWTIMER Device

2.9.1 Introduction of Timer

Hardware timers generally have two working modes, timer mode and counter mode. No matter which mode it is

working in, the essence is to count the pulse signal through the internal counter module. Below are some important

concepts of timers.

Counter mode: Count the external pulse signal from the external input pin.

Timer mode: count the internal pulse signal. Timers are often used as timing clocks to achieve timing detection,

timing response, and timing control.

2.9.2 Access Hardware Timer Device

The application program accesses the hardware timer device through the I/O device management interface provided

by RT-Thread. The relevant interface is as follows:

Function Describe

rt_device_find() Find timer device

rt_device_open() Enable the timer device in read/write mode

rt_device_set_rx_indicate() Set the timeout callback function

rt_device_control()
Control the timer device, you can set the timing mode

(single/period)/counting frequency, or stop the timer

rt_device_write() Set the timer timeout value and the timer will start immediately

rt_device_read() Get the current timer value

rt_device_close() Close timer device

2.9.3 Find Timer Device

The application obtains the device handle according to the name of the hardware timer device, and then can operate

the hardware timer device. The function to find the device is as follows:

rt_device_t rt_device_find(const char* name)

Parameter Describe

name Hardware timer device name

return -

Timer device handle If a device is found, the device handle is returned

RT_NULL No device found

2.9.4 Open Timer Device

Through the device handle, the application can open the device. When the device is opened, it will detect whether

the device has been initialized. If it is not initialized, the initialization interface will be called by default to initialize

the device. Open the device with the following function:

rt_err_t rt_device_open(rt_device_t dev, rt_uint16_t oflags)

36/41

Parameter Describe

dev Hardware timer device handle

oflags
Device open mode, generally open in read and write mode, that is, the

value: RT_DEVICE_OFLAG_RDWR

return -

RT_EOK Device opened successfully

Other error codes Device open failed

2.9.5 Set Timeout Callback Function

Set the timer timeout callback function through the following function, and this callback function will be called when

the timer times out:

rt_err_t rt_device_set_rx_indicate(rt_device_t dev, rt_err_t (*rx_ind)(rt_device_t dev,rt_size_t size))

Parameter Describe

dev The device handle

rx_ind Timeout callback function, provided by the caller

return -

RT_EOK Success

2.9.6 Control Timer Device

Through the command control word, the application program can configure the hardware timer device through the

following function:

rt_err_t rt_device_control(rt_device_t dev, rt_uint8_t cmd, void* arg)

Parameter Describe

dev The device handle

cmd Command control word

arg Control parameter

return -

RT_EOK Function executed successfully

-RT_ENOSYS Execution failed. dev is empty

Other error codes Execution failed

2.9.7 Set Timer Timeout Value

The timeout value of the timer can be set by the following function:

rt_size_t rt_device_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)

Parameter Describe

dev The device handle

pos Write data offset, unused, can take a value of 0

buffer Pointer to timer timeout structure

size The size of the timeout structure

return -

37/41

The actual size of the data to be written

0 Failed

2.9.8 Get Current Timer Value

The current value of the timer can be obtained by the following function:

rt_size_t rt_device_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)

Parameter Describe

dev Timer device handle

pos Write data offset, unused, can take a value of 0

buffer Output parameter, pointer to timer timeout structure

size The size of the timeout structure

return -

The size of the timeout structure Success

0 Failed

2.9.1 Close Timer Device

The timer device can be closed by the following function:

rt_err_t rt_device_close(rt_device_t dev)

Parameter Describe

dev Timer device handle

return -

RT_EOK Close device successfully

-RT_ERROR The device has been completely closed and cannot be closed repeatedly

Other error codes Failed to close device

38/41

2.10 WATCHDOG Device

2.10.1 Introduction of WATCHDOG

The hardware watchdog (watchdog timer) is a timer whose timing output is connected to the reset terminal of the

circuit. In the productized embedded system, in order to make the system reset automatically under abnormal

conditions, it is generally necessary to introduce a watchdog.

When the watchdog starts, the counter starts counting automatically. If it is not reset before the counter overflows, it

will send a reset signal to the CPU to restart the system (commonly known as "bitten by the dog").When the system

is running normally, it is necessary to clear the watchdog counter (commonly known as "feeding the dog") within the

time interval allowed by the watchdog to prevent the reset signal from being generated. If the system doesn't break

down, the program can "feed the dog" on time. Once the program runs away, there is no "feed the dog" and the system

"gets bitten" reset.

2.10.2 Access Watchdog Device

The application program accesses the watchdog hardware through the I/O device management interface provided by

RT-Thread. The relevant interfaces are as follows:

Function Describe

rt_device_find() Find the device based on the watchdog device name to obtain the device handle

rt_device_init() Initialize watchdog device

rt_device_control() Control watchdog device

rt_device_close() Close watchdog device

2.10.3 Find Watchdog

The application obtains the device handle according to the name of the watchdog device, and then can operate the

watchdog device. The device search function is as follows:

rt_device_t rt_device_find(const char* name)

Parameter Describe

name Watchdog device name

return -

The device handle If a device is found, the device handle is returned

RT_NULL The corresponding device object was not found

2.10.4 Initialize Watchdog

Before using the watchdog device, it needs to be initialized first. Initialize the watchdog device through the following

function:

rt_err_t rt_device_init(rt_device_t dev)

Parameter Describe

dev Watchdog device handle

39/41

return -

RT_EOK Device initialization succeeded

-RT_ENOSYS Initialization failed. The watchdog device driver initialization function is empty

Other error codes Device failed to open

2.10.5 Control Watchdog

Through the command control word, the application can configure the watchdog device through the following

function:

rt_err_t rt_device_control(rt_device_t dev, rt_uint8_t cmd, void* arg)

Parameter Describe

dev Watchdog device handle

cmd Command control word

arg Control parameter

return -

RT_EOK Function executed successfully

-RT_ENOSYS Execution failed. dev is empty

Other error codes Execution failed

2.10.6 Feed Dog in the Idle Thread Hook Function

static void idle_hook(void)

{

 /* Feed the dog in the idle thread callback */

 rt_device_control(wdg_dev, RT_DEVICE_CTRL_WDT_KEEPALIVE, NULL);

}

2.10.7 Close Watchdog

When the application completes the watchdog operation, the watchdog device can be closed by the following function:

rt_err_t rt_device_close(rt_device_t dev)

Parameter Describe

dev Watchdog device handle

return -

RT_EOK Close device successfully

-RT_ERROR The device has been completely closed and cannot be closed repeatedly

Other error codes Failed to close device

40/41

3 Version History

Date Version Remark

2021.05.07 V1.0 The initial version

41/41

4 Disclaimer

This document is the exclusive property of NSING TECHNOLOGIES PTE. LTD.(Hereinafter referred to as NSING).

This document, and the product of NSING described herein (Hereinafter referred to as the Product) are owned by

NSING under the laws and treaties of Republic of Singapore and other applicable jurisdictions worldwide. The

intellectual properties of the product belong to Nations Technologies Inc. and Nations Technologies Inc. does not

grant any third party any license under its patents, copyrights, trademarks, or other intellectual property rights. Names

and brands of third party may be mentioned or referred thereto (if any) for identification purposes only. NSING

reserves the right to make changes, corrections, enhancements, modifications, and improvements to this document at

any time without notice. Please contact NSING and obtain the latest version of this document before placing orders.

Although NATIONS has attempted to provide accurate and reliable information, NATIONS assumes no

responsibility for the accuracy and reliability of this document. It is the responsibility of the user of this document to

properly design, program, and test the functionality and safety of any application made of this information and any

resulting product. In no event shall NATIONS be liable for any direct, indirect, incidental, special, exemplary, or

consequential damages arising in any way out of the use of this document or the Product.

NATIONS Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure

of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed,

Insecure Usage’. Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy

control instruments, airplane or spaceship instruments, all types of safety devices, and other applications intended to

supporter sustain life. All Insecure Usage shall be made at user's risk. User shall indemnify NATIONS and hold

NATIONS harmless from and against all claims, costs, damages, and other liabilities, arising from or related to any

customer's Insecure Usage Any express or implied warranty with regard to this document or the Product, including,

but not limited to. The warranties of merchantability, fitness for a particular purpose and non-infringement are

disclaimed to the fullest extent permitted by law. Unless otherwise explicitly permitted by NATIONS, anyone may

not use, duplicate, modify, transcribe or otherwise distribute this document for any purposes, in whole or in part.

	1 Overview
	1.1 Brief Introduction

	2 Device Registration
	2.1 I/O Device
	2.1.1 Introduction of I/O Device
	2.1.2 Create and Register I/O Device
	2.1.3 Access I/O Device
	2.1.4 Find Device
	2.1.5 Initialize Device
	2.1.6 Open/Close Device
	2.1.7 Control Device
	2.1.8 Read/Write Device
	2.1.9 Data Sending and Receiving Callback

	2.2 PIN Device
	2.2.1 Introduction of PIN
	2.2.2 Access PIN Device
	2.2.3 Set Pin Mode
	2.2.4 Set Pin Level
	2.2.5 Read Pin Level
	2.2.6 Bind Pin Interrupt Callback Function
	2.2.7 Enable Pin Interrupt
	2.2.8 Breakout Pin Interrupt Callback Function

	2.3 SPI Device
	2.3.1 Introduction of SPI
	2.3.2 Mount SPI Device
	2.3.3 Configuring SPI Device
	2.3.4 Access SPI Device
	2.3.5 Find SPI Device
	2.3.6 Customize Transmission Data
	2.3.7 Transfer Data Once
	2.3.8 Send Data Once
	2.3.9 Receive Data Once
	2.3.10 Send Data Twice in a Row
	2.3.11 Send First, Then Receive
	2.3.12 Special Application Scenario
	2.3.13 Get the Bus
	2.3.14 Select Chip Select
	2.3.15 Add a Message
	2.3.16 Release Chip Select
	2.3.17 Release the Bus

	2.4 UART Device
	2.4.1 Introduction of UART
	2.4.2 Access Serial Port Device
	2.4.3 Find Serial Port Device
	2.4.4 Open Serial Port Device
	2.4.5 Control Serial Port Device
	2.4.6 Send Data
	2.4.7 Set the Send Completion Callback Function
	2.4.8 Set the Receive Callback Function
	2.4.9 Receive Data
	2.4.10 Close Serial Port Device

	2.5 I2C Device
	2.5.1 Introduction of I2C
	2.5.2 Access I2C bus device
	2.5.3 Find I2C bus device
	2.5.4 Data transfer

	2.6 ADC device
	2.6.1 Introduction of ADC
	2.6.2 Access ADC Device
	2.6.3 Find ADC Device
	2.6.4 Enable ADC Channel
	2.6.5 Read ADC Channel Sampling Value
	2.6.6 Close ADC Channel

	2.7 DAC device
	2.7.1 Introduction of DAC
	2.7.2 Access DAC Device
	2.7.3 Find DAC Device
	2.7.4 Enable DAC Channel
	2.7.5 Set DAC Channel Output Value
	2.7.6 Close DAC Channel

	2.8 CAN Device
	2.8.1 Introduction of CAN
	2.8.2 Access CAN Device
	2.8.3 Find CAN Device
	2.8.4 Open CAN Device
	2.8.5 Control CAN Device
	2.8.6 Send Data
	2.8.7 Set Receive Callback Function
	2.8.8 Receive Data
	2.8.9 Close CAN Device

	2.9 HWTIMER Device
	2.9.1 Introduction of Timer
	2.9.2 Access Hardware Timer Device
	2.9.3 Find Timer Device
	2.9.4 Open Timer Device
	2.9.5 Set Timeout Callback Function
	2.9.6 Control Timer Device
	2.9.7 Set Timer Timeout Value
	2.9.8 Get Current Timer Value
	2.9.1 Close Timer Device

	2.10 WATCHDOG Device
	2.10.1 Introduction of WATCHDOG
	2.10.2 Access Watchdog Device
	2.10.3 Find Watchdog
	2.10.4 Initialize Watchdog
	2.10.5 Control Watchdog
	2.10.6 Feed Dog in the Idle Thread Hook Function
	2.10.7 Close Watchdog

	3 Version History
	4 Disclaimer

