NSING nsing.com.sg

Application Note

IAP Upgrade

Introduction

This document mainly introduces the IAP upgrade application routine, the problems and solutions that may be

encountered during application development of N32G45X FR_WB series chips (hereinafter referred to as N32G45X).

1/22
NSING Technologies Pie. Lid.
Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674
Tel: ~65 69265050
Email: sales@nsing.com.sg

NSING nsing.com.sg

Contents
1 OVEIVICW .crvunnnriccssssnnnnecsssssnssrecssans 3
2 TAP Software Implementation Processcccccceevecvvvrnnnnnereccccscssssssnesnnnnes 7
2.1 Set the Start Address of the APP Program...........cccccooeuiiviiiiniiiiniiiniieceeeeeee, 7
2.2 Set the Offset of Interrupt Vector Table.........cccovevieeiiiiiiiiiieiieeceeeeee, 9
2.3 Generate BIN File in APP Project.......coouiiiiiiiiiiiiieieeieeeeeee e 10
2.4 Software Implementation ProcCess.........ccoccvviiieiiiieiiiicciieeeee e 10
3 Download VerifiCationccoceneeiiiiiicsniniccssssnnnnccssssnsenccssssnsssnecssnnnes 15
3.1 Host Computer Transmission Protocolccecciveriiiiiiiiiienciieeeeeecee e 15
3.2 Process for Downloading the BIN Fileccccooiiiiiiiiiiiiieeeeeee e 16
R I8 B V) o o7 15 () o USRS PPRPUPRPRP 17
4 Q& A oiirrrrnnnnttiiiiiisissssssssnstttitissnses 20
S Version HIStOTYccccivnnrrnrrnnnnriiccccsssssssssssnsssns 21
6 DISCIAIMET ...uueeieiinriecinteciisteeeisnneecssnneesssseecsssssencssssssecsssssesssssssessssssees 22
2/22

NSING Technologies Pie. Lid.

Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674

Tel: +65 926X

Email: sales@nsing.com.sg

NSING nsing.com.sg

1 Overview

IAP is an abbreviation of in application programming. It is to burn in some areas of User Flash during the running of the user
program. The purpose is to easily update the firmware program in the product through reserved communication ports after the
product is released. To realize the IAP function, this is, it will be updated when the user program is running, two project codes
need to be written when designing the firmware program. The first project code does not perform normal functional operations,
but only receives programs or data through some communication methods (such as USB and UART) to update the second part
of the code. The second project code is the real functional code. These two parts of project code are burned in different areas
of User Flash simultaneously. When the chip is powered on, the first project code starts to run, and it performs the following

operations:

1. Check whether second project code needs to be updated;

2. Ifno update is required, go to step 4.

3. Perform the update operation.

4. Jump to the second project code for execution;

The first part of the code must be burned in by other methods, such as JTAG or ISP. The second part of the code can be
burned in using the IAP function of the first part of the code. It also can be burned in together with the first part of the code.
When a program update is needed, it can be updated through the IAP code of the first part.

The first project code is known as Bootloader program, and the second project code is known as APP program. They are
generally stored in different address range of N32G45X Flash. Generally, Bootloader is stored from the lowest address area,
followed by APP program. New APP programs can be stored in Flash as well as Sram for execution. Subsequent chapters will
provide examples for illustration. So according to the above description, we need to implement two programs: Bootloader and

APP. The normal program running process of N32G45X is shown in Figure 1-1.

3/22
MNSING Technologies Pre. Lid.
Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674
Tel: 465 69265050
Email: sales@nsing.com.sg

NSING nsing.com.sg

Figure 1-1 The Normal Program Running Process

0X08000000 Memory physical address Stack top address
Reset interrupt vector
0X08000004 | (Start address of interrupt vector Reset_Handler 44—
table)

Non-maskable interrupt NMIEeception —_

@D vector
Hardware fault interrupt HardFaultE ti
vector ardFaultException
—» 0X08000004+n | Reset interrupt program entry Reset_Handler(void) @
Hardware fault interrupt HardFaultException(void)
program entry @
@ .
xxx Interrupt program entry xxx_Handler(void) <—
Ly 0X08000004+N main function entry int main(void)

main function
infinite loop

< ®
request

As shown in the figure above, the address of N32G45X's embedded Flash starts at 0x08000000, the program files are written

starting from this address. The N32G45X is a microcontroller based on the Cortex-M4F kernel, which internally responds to
interrupts through an interrupt vector table. After the program is startup, it will first take out the reset interrupt vector from the
interrupt vector table and execute the reset interrupt program to complete the startup. The starting address of this interrupt
vector table is 0x08000004. When the interrupt comes, the internal hardware mechanism of N32G45X will automatically locate
the PC pointer to the interrupt vector table. According to the interrupt source, the corresponding interrupt vector is extracted to

execute the interrupt service program.

4/22
MNSING Technologies Pre. Lid.
Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674
Tel: +65 6926809

Email: sales@nsing.com.sg

NSING nsing.com.sg

Figure 1-2 APP Update Process

0X08000000 Memory physical address Stack top address
Reset interrupt vector
0X08000004 (Start address of interrupt vector Reset_Handler | —
table)
o Non-maskable interrupt vector NMIEeception
Hardware fault interrupt vector HardFaultException
—> 0x08000004+N | AP Proced ‘gﬁtsa'” function int main(void)
|
o
§ { IAP process |
\/ v Jump @
Reset interrupt vector @
—— OX08000004+MN+M (New interrupt vector table start Reset_Handler
address)
Non-maskable interrupt vector NMIEeception @
l Hardware fault interrupt vector HardFaultException
® Reset interrupt program entry Reset_Handler(void)
Hardware fault interrupt program HardFaultException(void)
entry
xxx Interrupt program entry xxx_Handler({void) <
> 0X08000004+N+M+n | W medgﬁrC‘a'“ R int main(void)
main function | ®
infinite loop Interrup
=

As shown in Figure 1-2, after powering on, the chip will extract the address of reset interrupt vector from the address
0x08000004 of Flash and jump to the interrupt reset function. After executing the interrupt reset function, the program will
jump to the main function of IAP and start executing. When the main function is waiting for the upgrade, users can update the
APP by transmitting the update file through USB or UART. During the upgrade process, users can update while receiving, or
update after receiving the whole package of APP program. Since Flash and Sram reserved by Bootloader are relatively small,
the routine of this application note will update APP by subcontracting transmitting and receiving while updating.

After the APP program is updated, the program pointer jumps to the reset vector table of the newly written program. The
address of the reset interrupt vector are taken out from the new program, then program pointer jumps to the reset interrupt
service program of the new program, and then jumps to the main function of the APP program, steps 2 and 3 as shown in Figure

1-2, Main function is an infinite loop. And it is noticed that N32G45X Flash has two interrupt vector tables in different positions.

5/22
NSING Technologies Ple. Lid.
Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674
Tel: +65 6926809
Email: sales@nsing.com.sg

NSING nsing.com.sg

During the execution of main function, if the CPU gets an interrupt request, the PC pointer still forcibly jumps to address
0X08000004 instead of the interrupt vector table of the new program, step 4 as shown in Figurel-2. Then the program jumps
to the new interrupt service program corresponding to the interrupt source according to the offset of the interrupt vector table
set by us, step 5 as shown in Figure 1-2. After executing the interrupt service program, the program returns the main function
to continue running, step 6 as shown in the Figure 1-2. The start address of the reset interrupt vector of the new program is
0X08000004+N+M, where M is the jump offset of the new program. Subsequent chapters will explain how to set the offset in

project.

6/22
MNSING Technologies Pre. Lid.
Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674
Tel: +65 6926809
Email: sales@nsing.com.sg

NSING nsing.com.sg

2 IAP Software Implementation Process

Through the analysis of the above two processes, we know that the IAP application must meet two requirements:
1. The new program must start at an address with offset X after the IAP program;

2. The interrupt vector table of the new program must be moved with an offset of X;

2.1 Set The Start Address of The APP Program
2.1.1 Set Sram_APP Start Address

Figure 2-1 Define Start Address and Length of Array Sram_buf in the Bootloader Project

>roject L |] mainc] faph] IAPc |] bsp_usart.c
2% Project: Uart_JAP_Bootloader 108 = tp &
-3 N32GAFR 2 | # ine . IRP B
E-E5 STARTUP B
4 | #include-"n32g4fr.h"
] startup_n32g4fr.s . -
3 CMmsIs § ine Sram buf len 1024%3 Maximum receiving-is 32K, -length-is-0x8000
3 FWLB T ne Sram buf addr- (0x20 0-+-Sram buf len) // app receive -buffer start-address
=5 USER
[:
main.c 10 typedef void (*iapfun) (void); -// -Define a -function- type parameter
L] n32gafiitc 11 | void iap load app(u32 appzaddr); -//Jump to-APP program-execution
j delay.c 12 | void iap_write_appbin(u32 appxaddr,us *appbuf,u32-applen); -//5tart-ac-the specified-address, write -to-bin
] bsp_usart.c 45
14
L] 1apc G 1|
16
17
1g
19
2l -

As shown in Figure 2-1, in the Bootloader project, the array Sram_buf is defined to store the APP program. Its starting
address is 0x20008000 and the length is 1024*32 (32K).

Figure 2-2 Division of Sram Space

KA oOptions for Target 'N32G45x’ X

Device Target |output|Listing|User |C/C++ |Asm | Linker|Debug |Utilities|

Nationstech N32G457QEL7 Code Generation

ARMCompiler. [Use default compilerversion5 = |
Xtal (MHz): 120

Operati e N

peraling system one ﬂ [~ Use Cross-Module Optimization
System Viewer File: [¢ Use MicroLIB =

N32G457 svd J Floating Point Hardware: |Single Precision -
[Use CustomFile

Read/Only Memory Areas Read/Write Memory Areas

default off-chip Start Size Startup default off-chip Stant Size Nolnit

[ROM1: ’— ’— C r RAM1 [— [— -
r e[[r e[[
r e[[¢ roem|[[

on-chip on-chip
F RO [20008000 [(x5000 @ [RAM:: |0:20010000 [0x14000 r
T IROMZ | I C r Ram2 | [r

[| [cancel][Defaults | Help

Since the Sram of N32G45X starts at 0x20000000 and ends at 0x20024000, the size of the entire Sram is 144K. So in the
SRAM_APP project, setting the offset as shown in Figure 2-2: Click “magic wand”, select “Target”, type 0x20008000 for
“Start” and 0x8000 for “Size” in the “IROM1” column; type 0x20010000 for “Start” and 0x14000 for “Size” in the “IRAM1”

7/22

NSING Technologies Ple. Lid.

Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674

Tel: +65 69268000

Email: sales@nsing.com.sg

NSING nsing.com.sg

column. Therefore, the distribution of the Sram resources is as follows: the first 32K is allocated to the Bootloader, the next

32K is used to store APP programs, and the remaining 80K is allocated to APP program to call.

2.1.2 Set Flash_APP Start Address

Figure 2-3 Configure FLASH_APP Start Address

Project 28] wPe] bspusatc |] iaph] delayc] n32gdfr adcc
=% Project: Uart_IAP_Bootloz $ifndef. IAP H
=5 N32GAFR e TRP H
=5 STARTUP g
4 de - "n32g4fr.h"
L] startup_n32g¢ 5 . 1 .‘.3 I j .
03 CmMsis 6
td FWLB 7|| #d=fine FLASH APP BASE ADDR- Ox08004000-//BOOTLOAD reserves 16K space,
=i USER] . I -+ -//APP -program-starts-from-0x08004000
a E ine FLASH START ADDR FLASH APP_BASE RDDR
_] main.c 10 - - - - -
] n32g4fiite 11
J delay.c 12 | typedef -void- (*iapfun) (void): -// -Define-a function- type parameter.
_] bsp_usart.c 13 | void-iap_load_app (u32 appxaddr); -ffJump - to-APP program execution
14 | void-iap write appbin(u32 appxaddr,u8 *appbuf,u32 applen); //Start at the -specifie
2 ape e - -
1l
17 | #¥endif
18
s
20| Options for Target 'N32G4FR' X
Device Tarzet |Output|Listing|User |C/C++ |Asm | Linker | Debug | Utilities|
Nationstech N32G4FRMELT e
ARM Compiler: Use default compiler version &«
al (MHz): [[EH0
Operating system: [None =1 | 1 Use Cross-Moduie Optimization
System Viewer File: ¥ Use MicroLIB r
|HEEGLFF‘S"'El J Floating Peint Hardware: | Single Precision -
[Use Custom File
Read/Cnly Memory Areas Read/Write Memory Areas
default offchip Start Size Startup default off-chip Start Size Nolnit
[~ ROMI: C [T RAMT: r
I~ ROMZ: (o [T RAMZ: r
. FOM3; ([L RAM .
on-chip an-chip
W IROM{: |(xB000000 (k4000 (o ¥ IRAM1: |0x20000000 |(x4000 r
™ IROM2: | [(o} = IRAMZ: | | r
3 Cancel | Defailes | nlp |

As shown in Figure 2-3, in the Bootloader project corresponding to Flash_App, 16K Flash and 16K Sram are reserved for the
small amount of code about 13K, and the Flash jump address 0x0800400 is set. Click “magic wand”, select “Target”, type
0x08000000 for “Start” and 0x4000 for “Size” in the “IROM1” column; type 0x20000000 for “Start” and 0x4000 for “Size”
in the “IRAM1” column.

8/22
NSING Technologies Ple. Lid.
Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674
Tel: +65 6926809
Email: sales@nsing.com.sg

NSING nsing.com.sg

Figure 2-4 Division of Flash Space

Options for Target "N32G45x’ X
Device Target |Output |Listing|User |c/C++ |Asm |Linker|Debug |Utilities|
Nationstech N32G457QEL7 CodeCeperaion
ARM Compiler: |Use default compiler version 5 Ll
Xtal (MHz): |0
Cprieit | e = [Use Cross-Module Optimization
System Viewer File [v' Use MicroLIB m
[FB2Ge575vd J Floating PointHardware: |Single Precision -
[~ Use Custom File
Read/Only Memory Areas Read/Write Memory Areas
default off-chip Start Size Startup default offchip Stant Size Nolnit

r e[[roem:[[
r rm[[roRaz| [
r e[[rora | [

an-chip an-chip

IF JROM1: | 0xB004000 0x7C000 @ 2 IRAM1: |0x20004000 0x20000 |r
C

T IRoM2 | T - RaM2 | [~

i B

0K | [cancel | [Defaults |
The Flash of N32G45X has a maximum capacity of 512K, from address 0x0
8000000 to 0x08080000. The routine uses the first 16K Flash for the Bootloader and the remaining 496K Flash for APP. As
shown in Figure 2-4, in Flash_App project, click “magic wand”, select “Target”, type 0x08004000 for “Start” and 0x7C000
for “Size” in “IROM1” column; type 0x20004000 for “Start” and 0x20000 for “Size” in the “IRAM1” column,.

2.2 Set The Offset of Interrupt Vector Table

When the system startup, the systemlInit function is called first to initialize the clock, and the systemlInit function also
completes the setup of the interrupt vector table. At the end of the systemlInit function code, there are following lines of code:
#ifdef VECT_TAB_SRAM
SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM. */
#else
SCB->VTOR =FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH. */
#endif
It can be understood from the code that the VTOR register stores the start address of the interrupt vector table.
VECT_TAB_SRAM is not defined by default, so perform SCB - > VTOR = FLASH _BASE | VECT_TAB_OFFSET; For
Flash APP, we set it to FLASH BASE+ offset 0x4000, so we can add the following code before jumping to the main
function of FLASH APP to reset the start address of the interrupt vector table:
SCB->VTOR = FLASH_BASE | 0x4000;
The above is the case of Flash APP. When using Sram APP, we set the start address as: SRAM_bASE+0x8000. Using the
same method, before jumping to the main function of Sram APP, we add the following code:
SCB->VTOR = SRAM_BASE | 0x8000;

This completes the setting of the interrupt vector table offset

9/22
MNSING Technologies Pre. Lid.
Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674
Tel: +65 6926809
Email: sales@nsing.com.sg

NSING nsing.com.sg

2.3 Generate BIN File in APP project

Figure 2-5 Configure to Generation the “BIN” File

KA options for Target 'N32G45x' x
Device | Tarzet | Output | Listing User ICIC-H- | 4sn | Linker|Debug |Utilities|
Command ltems User Command .. Stopon.. S.
= Before Compile C/C...
[Run #1] Not Speci... |
[Run #2 (] Not Speci... [
= Before Build/Rebuild
[Run #1 1] Not Speci... |
[Run #2] Not Speci... |
©--Aftar Blild/Behild
v EEEZI ome!f --bin -0 "SL@Lbin" "#L] |j Not Speci... [
I Run#Z Q Not Speci.. |

| Run 'After-Build' Conditionally

|v Beep When Complete | Start Debugging

0K Cancel | Defaults | Help

Figure 2.4

In the Sram App and Flash App projects, click "Magic Wand" and select "USER". Under "After Build/Rebuid", tick the box to

the left of "RUN #1", and fill "fromelf --bin -0 "$L@L.bin" "#L"" in the right column. After clicking OK, recompile the

program and the BIN file can be generated. The BIN file is saved in the “\MDK-ARM\Objects” directory.

2.4 Software Implementation Process

The software process of Bootloader mainly consists of three steps:

1. Power on and initialize the serial port to determine whether the BIN file of the App is waiting to receive.

2. Subcontracting receives the BIN file, then store the contents to Sram_buf at the specified address, or writes to the

specified Flash address;
3. After receiving BIN file is complete, the program jumps;

10/22
MNSING Technologies Pre. Lid.

Add: NSING, Teletech Park #02-28, 20 Science Park Road,

Singapore 117674
Tel: +65 69263050
Email: sales@nsing.com.sg

NSING

Figure 2-5 Upgrade Flow

nsing.com.sg

-

Initialize serial port and timer

Is there an app?

Waiting to receive bin file

eceive a frame and veri
completion?

A
Turn off the total mten‘upt? configure Return ACK
the vector table and jump
Initialize the serial port < Data length reaches 2K?
A
Printf Log Write data to sram or FLASH
y
< end > BIN received completed?
11/22

MNSING Technologies Pre. Lid.

Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674
Tel: 65 69268090

Email: sales@nsing.com.sg

NSING

2.4.1 Bootloader Process of Sram_APP

nsing.com.sg

Open Uart_ IAP_Bootloader project, we can see that the program is mainly in “main.c”, “IAP.c”, and “bsp_usart.c" files. The

code for the three steps will be detailed below.

Figure 2-6 Code of the main Function When APP Programs are Stored in Sram

int main(void)
"

tim3_inic (%9, 71); //72ME/ (T1+1)=1M Hz; 1M Hz/(99+1)=100us
USART Config|()
printf ("NZ3601_init success! \r\n"):
while (1)
3 ir
while (receive_app_dons — 0) //No APP program, waiting to receive updates

] {
if(f _final frame == 1)

| {
receive_app_done = 1; //After receiving the BIN upgrade fils
m delay ms(500);
break:
b
1

1. Waiting to receive the bin file

1I (z=ceive_app_doms) //ADp has been updsced
] {

receive app done = 0
TIM_Enable (TIM3, DISABLE);
/

printf ("APP addressitx\r\n", (Sram buf_addr));:
printf("Start to execute SRAM user code!!\r\n"):

//Turn off timer interrupt

5CB->VIOR = SRAM BASE | Oxf
iap_load app(Szam_buf_addr);

up interrup
© the start ad

vector table before jump

//5et

£/ Famp

=ss of the APF, during which it cannot be interrupted by other interrupts,

3. After the reception is completed, the program jumps.

otherwise the jump will fail

Figure 2-7 Code of the USART1_IRQHandler Function When APP Programs are Stored in Sram

wvoid USART1_IRQHandler (void)

1t
uincd_t 1 = 0;
uints_t buf temp[256] = {0}z
uints_t sum check = 0
if (USART_GetFlagStatus (DEBUG_USARTx, USART_INT_RXDNE) != RESET)
1 {
USART ClrIntPendingBit (DEBUG USARTx, USART INT RXDNE):
if(receive cnt <= 134)
1 {
RX_buf [receive_cnt++] = USART_ReceiveData (DEBUG_USARTx) :
current_pack length = RX buf[3]+5; //Ca te the data length of the current pack
1f((RX_buf[0] == 0x01) & (RX_buf([1] Gt (receive cnt== current_phck length)) //Frame header is fixed to Ox01, 0xOl.
1 {//pack le is fixed uar
receive_
f_receive frame =
memcpy (buf_temp,RX buf,25€) & g -
for(i = 0; i -‘currgnc_pack_lengch -1; i++) Subcontract to receive bin file and verify
1 {
sum check = sum check + buf temp[il: //
}
sum check = ~sum check + 1;
if (sum_check =- bul_templcurzent_pack_length-11) //Compare SUM, if it is di t, discar resend
1 1
send ack(): //Respond ost puter
memcpy (§Sram_buf [rx_nunber ¢ &RX_buf[4],current_pack length-5); //Data transfer to Sram buf
r®_nunber ++;
1f_((Curxentipackvlength::i]{.Llﬂxfbuf[i]::,]) After sending the last packet of bin content, the host computer will send a S5-byte frame end

1 {
rx_nunber = 0:
£_final_frame = 1:

current_pack length =

2. Cache the bin file to Sram and return ACK

memset (RX_buf, 0x00,sizeof (RX buf));

As shown in Figure 2-6 and Figure 2-7, in main function, after initialization, there are two while(1) loops, one for waiting to

receive and the other for jumping to Sram execution program respectively. BIN upgrade file is received in the serial port

interrupt USART1_IRQHandler(void) function. In order to minimize the use of Bootloader resources, be compatible with

receiving large BIN files and ensure the integrity of BIN files, we split BIN into small packages for transmitting, transmitting

128 bytes each time. Therefore, after receiving a packet of data, it will be verified according to the transmission protocol. If

12/22

NSING Technologies Ple. Lid.

Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674

Tel: +65 6926805H)

Email: sales@nsing.com.sg

NSING nsing.com.sg

the verification fails, the current packet will be discarded and the host computer retransmits the current packet. Transport

protocols will be described in detail in subsequent section.

Figure 2-8 Code of the iap_load_app Function When APP Programs are Stored in Sram

_asm;ygid MSR _MS5P(u32 - addr) -

- - - -MSR-MSP, -rQ-//set Main- Stack-values
... .BX-rls

----- - jumpZapp = (iapfun) * (va32*) (appxaddr+4) ; .
----- - ‘MSR_MSP (* (vu32*) appxaddr) ; -// -initialize-the- stack-pointer set offset and Jump

----- - jumpZapp () ;- // Jump to APP.

As shown in Figure 2-8, after receiving the complete BIN file, program jumps to iap load app (Sram_buf addr) in Figure 2-
5; Sram_buf addr is the starting address 0x20008000 of Sram_buf that we set in Figure 2-1.

2.4.2 Bootloader Process of Flash_App

Figure 2-9 Code of the main Function When APP Programs are Stored in Flash

int -main(void)

I
-tim3_init (99, T1);-//72MH/ (71+1)=1M Hz; 1M Hz/(99+1)=100us
-USART_Config():
printf ("Nz3601_init success! \r\n"):

while (1)
1 H
-+ 'if (FLASH ReadWord(app_update flag_addr) == 0x12345678) //Whether -the power-on-detection needs to-jump directly
1 s . .
- -receive app done = 1; 1. Check whether you need to jump directly
L
while(receive_app_done =— 0) -//No APP-program, waiting o rsceive updates
1 s
e - if (f_IAP_flashing.== 1)
1 -{
TIM Enable (TIM3, DISABLE): 2.The Flash writes the received BIN file
USART_Enable (DEBUG_USARTx, -DISABLE)
s

//Update -the received pack-package

- IAP_UFDATE_RFF () ;
£_IAP_flashing
£ receive frame

e ... Aif(f_final frame
| L

//Clear-the receive frame flag
.1}

£_final frame = 0;
receive app_done ; //Update-is complete
-app_flag write (0x12345675.,app_update_flag addr);//Write IAF-upgrade-flag

<}

TIM_Enable (TIM3, ENABLE):

- ... USART Enable (DEBUG_USARTx, -ENABLE) ;
-}

if (receive_app_done) -//App -has been-updated

1 R B
B ‘receive app done = 0;

TIM Enable(TIMS, DISABLE); //Turn-off timer interrupt 3.BIN update completed, jump

"

-printf ("AFF address:ix\r\n", (FLASH START ADDR));

-printf ("Start to-execute-Flash-user -cade!!\r\n");

iap_load_app (FLASH START_ADDR) ; -//Jump-to the-start address of the APP, -during-which-it- cannot-be interrupted-by other interrupts, -otherwife the Jjump will- fail

B
As shown in Figure 2-9, in the main function, the program will determine whether it needs to jump directly after
initialization, because the program in Flash will not be lost in power down and can be maintained all the time after updating,

but the data in Sram will be lost after power down, so there is no such judgment. If the program has not been updated outside

13/22
NSING Technologies Pre. Lid.
Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674
Tel: 65 69263000
Email: sales@nsing.com.sg

NSING nsing.com.sg

the Bootloader area, it will wait to receive the BIN file through the serial port for updating. Since one Flash page of
N32G45X is 2K, to avoid too much address judgment, the routine is to write the Flash once after receiving the packet of 2K
size. It can avoid occupying too much Sram resources. After writing the last frame of the BIN data packet, a flag will be

written into the Flash, and the next power-on will directly jump to the APP program.

Figure 2-10 Code of the USART1_IRQHandler Function When APP Programs are Stored in Flash

void USART1_IRQHandler(void)

Bl
uwint® t i = 0;
uint8_t buf_temp[25€] = (0):
uints_t sum check = O;
Y
if (USART_GetFlagStatus (DEBUG_USARTxz, USART INT RXIME) != RESET)
3 t
USART_ClzIntPendingBit (DEBUG_USARTx, USART INT_RXDNE);
slot_timer = O;
if (receive_cnt <= 134)
«
BX buf(receive cnt++] = USART ReceiveData (DEBUS_USAETz);
current_pack_length = RX_buf[3]45: jc ne data
LE((RX Buf[o] == 0x01)&&(RX buf[l] == 0x01)&¢ (receive_cat== curreat_pack_leagth)) 5 fix
El 1 is fixed to
receive_cat = 0; //Maximum 12845 bytes

£ receive

25€) 2

t_pack_length -1 1++) - D
3 : = Transmission protocol and checksum of subcontracted receiving bin files
sum_check = sum_check + buf semp[i]: //Calculate SUM check
sum_check = ~sum_check + 1:
if((sum check == buf temp[current_pack length-1])&é&(f_TAP_flashing==0)} //Compare SUM, if flash is being written, discard the current packet, and wait for the host computer to resend

T
send_ack():
memcpy (6f1ash_buf [rx_nunber+128],&RX_buf (4] ,current_pack_length-S):
T nunber +4:

if(zx_nunber >= 18) //Bfter receiving 16 times for a total of 2K, write a flash

El {

rx_nunber = 0;
£ I8¢ flashing = L:
£_IAP start = 1:

After receiving 2K data, write flash once

(Dut(31—=01 77BIter sending the last packet Of bin content, Lhe Dost CoBputer vall send & 5-byte frame end
rx_number = 0:
£ _IAP flashing = 1; Receive the last end of frame
f_final frame = 1;

cuzzent_pack_length = 07

memset (RX_puf, 0x00, 5iz=0f (RX_buf)) ;

As shown in Figure 2-10, Flash reception is slightly different from Sram reception in that the Flash Bootloader defines a 2K
cache buffer that will be written to Flash after 2K reception.

Figure 2-11 Code of the IAP_UPDATE_APP Function When APP Programs are Stored in Flash

|/ %+
J/Upgrade APP
E * f
wvold IAP UFDATE APF (void)
It - - 0x08004000
ready write_ addr ={ FLASH APP BASE ADDR]+ pages_number*2048;
I
while (app flash write((uint32 t *)flash buf, ready write addr)): /{ILP upgrade 2K each time
i

memset (flash buf, 0x00,2048);
pages_number++;

As shown in Figure 2-11, after receiving 2K data or the last frame of the data packet, the IAP. UPDATE_APP(void) is called
for upgrading. The starting address FLASH_APP_BASE_ADDR is 0x08004000.

14 /22
NSING Technologies Ple. Lid.
Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674
Tel: +65 69268000
ail: sales@nsing.com.sg

NSING

3 Download Verification

3.1

Host Computer Transmission Protocol

nsing.com.sg

The host computer tool used for verification is XCOM V2.6, its transmission protocol has a frame header of 2 bytes and can

be flexibly configured. It supports ACK response and subcontracting to send the BIN file. The maximum length of each
packet is 255 bytes. It has SUM, CRC16 and other verification methods.

Table 3-1 Protocol Format

Protocol

Format

Frame Frame Frame Length of
Data Data Data Data
Header 1 | Header 2 | Number | the Frame Checksum
0x01 0x01 n length Data 0 Data 1 Data 2 Datan SUM

The protocol consists of the first 4 bytes, which are 2 bytes frame header, the current frame number and the length of the frame.

The frame header can be set at will. When the frame number exceeds 255, it will continue to increase from 0. The frame length

is arbitrarily set by the user. The frame header of the routine is 0x01, and the frame length is 0x80. The SUM mode is verified

and selected. After the frame number is increased to 255, the next frame will be counted from 0.

Table 3-2 ACK Format

ACK Format

Frame Header 1

Frame Header 2

Frame Number

Length of The

Frame

Checksum

0x01

0x01

n

0

SUM

After receiving a complete packet, the chip will respond to the host computer with an ACK signal. If no ACK is received, the

host computer will send the packet of the current frame repeatedly.

15/22

MNSING Technologies Pre. Lid.

Add: NSING, Teletech Park #02-28, 20 Science Park Road,

Singapore 117674
Tel: +65 6926205

Email: sales@nsing.com.sg

NSING nsing.com.sg

3.2 Process for Downloading the BIN File

Figure 3-17 Procedure for Downloading the “BIN” File from the Host Computer

S XCOM V2.6 - O *
4E BA 33 36 30 31 SF 69 €E 62 74 20 T3 ™5 63 63 65 73 73 21 2D OD OA O1 O1 27 0O D7 Fort

01 01 28 0 D&

01 01 29 00 IS5 COMS : USB-SERTAL CH34C -~

01 01 2ZA 00 D4

01 D1 ZB 00 I3 - Baud rate | 115200 L

01 01 2C 00 D2

01 01 2D 00 D1 Stop bits |1 w
01 01 ZE OO0 DO

01 01 2F 00 CF Data hitz & w
01 01 30 00 CE

01 01 21 00 CD Farity Hone LV
01 01 32 00 CC .

01 01 33 00 CB Operation @ Close

01 01 34 00 Ca

g: g: i $ Eg Save Data || Clear Data

send count:l [] TR

01 01 37 00 C7

01 01 38 00 C6 [z L] auto save
01 01 39 00 C5 [] TimeStamp 1000 o

01 01 3A 00 C4

01 0L 3B 00 C3
01 01 3C 00 C2
U1 01 30 0o c1
01 01 3E OO0 CO
01 01 3F 00 EF
01 01 40 00 EE
01 Nt 41 0n BN
01 01 42 00 BC
01 01 43 00 EB
01 D1 44 O0 EA
01 01 45 DO B9
01 01 46 00 BB
zend count:1

01 01 47 00 E7
01 01 48 00 B8 stepl
01 01 49 00 ES

Single Send Multi Sen4 Protocel Transmit ‘Help

Slave Response Host Send step3
Addressihex): 01 Funetion(hex):01 Address: Function: Cycle: 1000 ms [Auto Send
Lengthi{dec):] Sequenceldes):0 Repeat: 10 Datalength:h Sequence 1 Check: SUM o StED4
Checked{dec): Frame format errar, |E|1 07 03 04 05 ctonT | Send
) parsing failed , : : - :
Rezults: Stepﬁ Open File |'\Pr1ntf.1:-1n || Sned File ‘ Stop Send
Wor dwr ap Original frame MaxDatalength W0 Cloze Frotocol Transmit 5‘tep2
step5 ,
-ﬁ - | www.openedv.com | S:0 | R:0 | Current time14:53:52

As shown in Figure 3-1, there are 7 steps for downloading the BIN file from the host computer:
Stepl: open XCOM V2.6 and select “Protocol Transmit”;

Step2: click “Open Protocol Transmit”;

Step3: configure a 2-byte frame header and fill in 0x01;

16 /22
NSING Technologies Ple. Lid.
Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674
Tel: +65 69268000
Email: sales@nsing.com.sg

NSING

Step4: Select “SUM?” as the validation method;
Step5: Set the frame length to 128;

Step6: Open the selection BIN file;

Step7: Click “Send File”;

3.3 Verification

Figure 3-2 The Message Displayed after the Successful Sending

8 NCOM V2.6

01 01 9C 00 62
send count1
01 01 9D 00 81
01 01 9E 00 &0
01 01 9F 00 &F
01 01 AD 0O SE
01 01 Al 00 5D
01 01 A2 00 5C
01 01 A3 00 5B
01 01 Ad OO BA
01 01 A5 00 59
01 01 A6 00 58
01 01 AT 00 &7
41 60 B0 20 61 6d 64 T2 65 T3 T3 A BA C

note

The total time of sending

10 DO 46 6C 61 73 68 03 3 BB A7 B4 P ¢ the file: 1983ms

GE20 46 6C 6l T3 EB 20 BOGF 7T €6 T2 ¢
6C 61 73 60 2E 2 ZE 20 QA 0D 00

mnfirm

Single Send Multi Send Frotocol Transmit Help

Slave Kesponse

bhddresshex): 01 Function(hex):01

Length(dec): 0 Sequence(dec):0

ERepeat:

Host Send

hddrezs: Fu.ncti-:-n:
Datalength:0

nsing.com.sg

Fort

COME : USB-SERIAL CH34C ©

Baud rate [115200 e

Stop bits |1 w
Data bitz & w
Farity Hone w

Operation @ Close

Save Data | _Clear Data
[] DTE

[]Ers [] auto save
[] TimeStamp 1000 oE

Cyele: ms [| Aute Send

Check: SIM w

| Send

|"nPrint£.]:-in|

Checkedidec): ||:|1 02 03 04 08
Frame format error,

Results: . . Open File
parsing failed

Wor dwr ap Original frame MaxDatalenzth

-ﬂ- - | www.openedv.com |S:EII R:0

| Sned File Stop Send

Cloze Frotocol Transmit

|CTS=D DSR=0 DCD=D| Current time16:05:07

As shown in Figure 3-2, after the successful sending, the message "The total time of sending the file: XXXX ms" will be

displayed.

17/22

NSING Technologies Ple. Lid.

Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674

Tel: +65 69268000

Email: sales@nsing.com.sg

NSING nsing.com.sg

Figure 3-3 The Program Jumps to APP_address to Execute the Code in Flash After Initialization

A XCOM V2.6 - O Pt

WZ3601 _init succeszs! Port

M‘f‘_ address: 8004000 COME : USE-SERTAL CH34C -

Baud rate | 115200 e

Start to execute Flash user code

Run In Flash Powerlp

Stop bitz |1 w
Run In Flash ..

Data bits & w
Fun In Flash .. e Home >
Bun In Flash Operation @ Close
Bun In Flash

Sare Data || Clear Data

Run In Flash .. []ITE

] RIS [] auto save
[] TimeStamp 1000 o

Towm T B1..l

Single Send Multi Send Frotocel Transmit Help

Slare Responze Host Send

Addressthex): 01 Funetion(hex):01 hddress: Function: Cycle: 300 ms []| Auto Send

Length{dec): 0 Sequenceldec):0 Repeat: Datalength:0 Sequence 0 Check: SN w

Checked(des): ||:|1 0z 03 04 05 | Tend
Frame format error,

Results=: L Open File |"-.Printf.]:-in | Sned File Stop Send
parsing failed

Wor dwr ap Original frame MaxDatalength %0 | Close Protocol Transmit

-n- ~ [www.openedv.com | 50 | R:0 |CTS=D DSR=0 DCD=D| Current timel16:14:15

As shown in Figure 3.3, after initialization, the program jumps to APP_address: 0x08004000 to start executing the program
in Flash.

18/22
MNSING Technologies Pre. Lid.
Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674
Tel: +65 69268000
Email: sales@nsing.com.sg

NSING nsing.com.sg

Figure 3-4 The Program Jumps to APP_address to Execute the Code in Sram After Initialization

i XCOM V2.6 - O X
WZ3601_init success! A BOHE
OOrvO0OwO0r1007s00RO070O07rO0%000w0O00WMO07L007k0071007
100°H007:00°FO007E0070007c00%007400%e00?007>00=007 COMS: USB-SERTAL CH34C ~
<007:007:007900%007700%s00007400730020071007

0007/007. OO0?-007, APP address: 20008000 BHE
T ATSRAMA PR R

? fELtis 1 v
Run In Sram Powerlp ﬁ*ﬁfﬁ 8 e

Haf None v
BOEE @ X@R0

BRun In Sram. ..

Bun In Sram. .. ‘ ﬁ#ﬁﬂ iﬁm
¥ 1 16¥HIFRT] DIR

BREE SERE DSR2
WAL FHEE
ML (hex): 01 DATHAE (hex): 0L Mt o1 bhiThEE: 01 MhEER: =00 ns gihsiE

HIBFE (dec): 0 WS (dec): 210 EEERE: 10 #ERE: o BREESY: 210 fR3a 5= S

FS(E (dee): 44 01 02 03 04 05 wiE

iR mEskaR, ikt [HERE] ke ERpraRes vy || EEkE | | RiiaE
BT TR BAiERE 1 0% BEhthR R

£ - www.openedv.com ‘ §:5583 ‘ R:591 |CT5={] DSR=0 DCD=D‘ SRIETE 17:03:34

As shown in Figure 3-4, after receiving the BIN file, the program successfully jumped to APP_address: 0x20008000 to

execute the code in Sram.

19/22
NSING Technologies Ple. Lid.
Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674
Tel: 65 6926809
Email: sales@nsing.com.sg

NSING nsing.com.sg

4 Q&A

1. Q: The BIN file cannot be received, and the verification fails.
A: Check whether the baud rate is consistent and whether SUM is selected as the verification method.
2. Q: The APP program fails to jump;
A: Check whether the address set in the project matches the address the program will jump to; disable all interrupts

before jumping.

20/22
MNSING Technologies Pre. Lid.
Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674
Tel: +65 69268000
Email: sales@nsing.com.sg

NSING

Version History

nsing.com.sg

Version Date Changes
V1.0 2020.9.2 The initial release
VI1.1 2021.7.1 Added IAP software flowchart

21/22

MNSING Technologies Pre. Lid.

Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674

Tel: +65 69268000

Email: sales@nsing.com.sg

NSING nsing.com.sg

6 Disclaimer

This document is the exclusive property of NSING TECHNOLOGIES PTE. LTD.(Hereinafter referred to as NSING).
This document, and the product of NSING described herein (Hereinafter referred to as the Product) are owned by
NSING under the laws and treaties of Republic of Singapore and other applicable jurisdictions worldwide. The
intellectual properties of the product belong to Nations Technologies Inc. and Nations Technologies Inc. does not
grant any third party any license under its patents, copyrights, trademarks, or other intellectual property rights. Names
and brands of third party may be mentioned or referred thereto (if any) for identification purposes only. NSING
reserves the right to make changes, corrections. enhancements, modifications, and improvements to this document at
any time without notice. Please contact NSING and obtain the latest version of this document before placing orders.
Although NATIONS has attempted to provide accurate and reliable information, NATIONS assumes no
responsibility for the accuracy and reliability of this document. It is the responsibility of the user of this document to
properly design, program, and test the functionality and safety of any application made of this information and any
resulting product. In no event shall NATIONS be liable for any direct, indirect, incidental, special, exemplary, or
consequential damages arising in any way out of the use of this document or the Product.

NATIONS Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure
of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed,
Insecure Usage’. Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, all types of safety devices, and other applications intended to
supporter sustain life. All Insecure Usage shall be made at user's risk. User shall indemnify NATIONS and hold
NATIONS harmless from and against all claims, costs, damages, and other liabilities, arising from or related to any
customer's Insecure Usage Any express or implied warranty with regard to this document or the Product, including,
but not limited to. The warranties of merchantability, fitness for a particular purpose and non-infringement are
disclaimed to the fullest extent permitted by law. Unless otherwise explicitly permitted by NATIONS, anyone may

not use, duplicate, modify, transcribe or otherwise distribute this document for any purposes, in whole or in part.

22/22
MNSING Technologies Pre. Lid.
Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674
Tel: 465 69265050
Email: sales@nsing.com.sg

	1 Overview
	2 IAP Software Implementation Process
	2.1 Set The Start Address of The APP Program
	2.1.1 Set Sram_APP Start Address
	2.1.2 Set Flash_APP Start Address

	2.2 Set The Offset of Interrupt Vector Table
	2.3 Generate BIN File in APP project
	2.4 Software Implementation Process
	2.4.1 Bootloader Process of Sram_APP
	2.4.2 Bootloader Process of Flash_App

	3 Download Verification
	3.1 Host Computer Transmission Protocol
	3.2 Process for Downloading the BIN File
	3.3 Verification

	4 Q&A
	5 Version History
	6 Disclaimer

