NSING

nsing.com.sg

Application Note
General MCU RT_Thread Device Registration

Introduction

This document mainly describes the RT Thread device registration of the N32G45x series, N32G4FR series,

N32WB452 series, N32G43x series, N32L40x series, and N32L43x series MCUs, so that users can quickly
familiarize with the RT Thread device driver.

1/ 44

NSING Technologies Pte, Lid.

Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674

Tel: =65 69265050

Emml: salesf@nsing com.sg

NSING nsing.com.sg

Contents

1 OVERVIEW 5
1.1 BRIEF INTRODUGTION......ccciiiiutttiteeeeeeiittteeeeeeeeeetttaeeeeeesaatssasssaeesaessssssssaeesaassssssaseaeeaanssssssaaeeaaassssssssaesessassssseeeseesansees 5
2 DEVICE REGISTRATION 6
2T TJO DEVICE ...ttt a et e e 6
2.1.1 Introduction OF I/O DIEVICEcoueiiuiiiieiieieee ettt ettt ettt et e e e s et e sbeesbe e teeaeeemteeaeeebeenbeebeenteeneesneas 6
2.1.2 Create and RegiSter I/O DIEVICEccueeiuieiieiieiieitieeteet ettt ettt ettt sttt e bt et ettt e st e et e st e e beenteenaesneas 7
2.1.3 ACCESS I/0 DIEVICE ...ttt ettt ettt ettt et e et e e b et e bt emt e e e e e emeese e e saeeneeenteeaeeene e bt e bt enbeenneeneeeneas 7
I B 11 1o B B 1) T4 (o7 SRR 8
2.1.5 INTHANZE DIEVICE. ..c.teetieteeie ettt ettt ettt et e et et eae e eae e et e et e et e emteemeesaeesseesaeemeeenseemeeeneenseanseenseenseensesneas 8
2.1.6 OPEN/CLOSE DEVICE ..ottt ettt ettt ettt ettt et e et e et et e emeeee e e eseesseesae e et eneeemeeeneenseanseenseenseensesneas 8

B T A 0 (0] B D 1< 4 SRR 9
2.1.8 REAA/WIIEE DIEVICE. ... veeuteeieeeiieeeieetie sttt ettt ettt e sttt et eae e eae e et e et e em bt emteeeeesmeeeseesae e et emeeemeeeneenseanseenseenseeneesnnas 9
2.1.9 Data Transmission and Reception Callbackcoiiiiiiiiiiiiiiei et 10
2.2 PIN DEVICE......ceutetitesteeteettetteutete et e e et eteeatettestessesasteeseeseeseaneensansansees e et e eseaseensensanseeseeseeseessensensanseeseeseentansensansensensenas 11
2.2.1 Introduction OF PIN......cuioii ettt ettt ettt et e et e e e e sseesaeesseenbeenseeneeeneeeneesneenneens 11
2.2.2 ACCESS PIIN DEVICEeeutieieiie ettt ettt ettt et e st e et e et et e st e et e et e e st emteemeesmeesaeeeseenseenseeneeenteensesneanseans 11
B BT B o 1 LY (o1 LSRR 12
B BT B o 1 97 < SRR 12
2.2.5 REAA PIN LEVEL ...ttt ettt ettt et e e e et e et et e en e eme e e aeeese e bt ete e et enteeneeeneenneens 12
2.2.6 Bind Pin Interrupt Callback FUNCHOMNeeiuiiiiiiirieiieceese ettt ettt neesneenneens 12
2.2.7 ENADIE Pitl INTEITUPE.....cveeieeie ettt ettt ettt ettt et e et e s et e bt et et e eneesmeesseesseenseenseenseenseeneenneenseens 13
2.2.8 Breakout Pin Interrupt Callback FUNCHIONooouiiiiiieiiei ettt 13
2.3 SPIDEVICE ...ttt et ettt et e e st s et e bt et e ae e e eea e e bt et et e e e she e s ae e sat e ae e st et e eneeeanenneens 14
2.3.1 INtrodUCHION OF SPLottt ettt et et e st e bt et et e entesmeesseesseenseeseenseeneeeneeeneenseens 14
2.3.2 MOUNE SPTDIEVICE ...uveeieenieeie et etie et te it et et et et e st e ste e st e et e et e aeeeneees e et e enseenseemseemeesseesseenseenseenseenseensesneanseans 15
2.3.3 CoNTIGUIE SPI DEVICEeeuieeeteiieeiieetieeti et et ettt st e st e e teete et e et e eneees e et e e st enseensesmeesmeesseenseenseenseeneeeneenneanneens 16
2.3.4 ACCESS SPIDIEVICEvietieieeie ettt et et et e s tte st este e st e et e et eaeeeneees e et e enseenteemseemeesmeesseenseenseenseeneeensenneanseens 16
2.3.5 FINA SPI DEVICE.eeitieiieieeit ettt etieette it ettt eiteete s etesste s st e st e st eaeeeseess e e seenseenseensesnsesseesseeseenseenseenseensennsanseans 17
2.3.6 Customize TranSmisSion DAtc.coieriiiiieiiiiii ettt ettt ete e see st esseenseenseensesnsesnaenseens 17
2.3.7 Transfer Data OMNCE......cc.eeiueeieiiieeieeietiete et et eteete st e st esae e st e st eseeeseessee st enseenseensesnsesseesseenseenseenseensesssennsanseens 18
2.3.8 SENA DAtA ONCE ...c.veeiieiieieeit ettt ee et et eteette st esseesaeeseenseeaeeeseesseenseanseenseensesnsesaeesseenseenseenseenseenseennanseens 18
2.3.9 RECEIVE DAtA ONCEeeuvieieeit ettt ettt e e st e te e st et et e e st e s st e st enseenseensesnsesneesseenseenseenseensenssennsenseens 19
2.3.10 Send Data TWiICe 1Nl SUCCESSIONeeeuieeieiieiieieriteseesttesteeseeteeeeeseesseesseasseenseansesssesseesseesseeseenseensesssesssenseens 19
2.3.11 Send First, THen RECEIVEc.uieiuiiiiiiieiii ettt ettt et e tae ettt e s b e e eaveestbeesaseesebeeesbeesssaessseessseassseessseessseees 21
2.3.12 Special APPlICAtION SCENATIOccueruiriteiiiirtinterte ettt ettt ettt ettt ettt et sbe bt ese et et saeebesbeebeeseensenaenaennes 22
2.3.13 Gt THE BUS ...ttt ettt sttt e st e te et e e e et e e st e s st et e enseenseensesnaesneesseenseenseenseenseenseeneenseens 22
2.3.14 Select ChIP SEIECTION.......ceuiiirtirtiriertieiteitertet ettt ettt ettt et ettt sa et be e bt et et et e saeebe s bt ebeeaeensennenaenes 22
2.3.15 Add A MESSAZE ..c.vvenveeiieieeieeteeteetteette et et esteasteasaesseessee st asseanseesseassees s et e enseenseenteenseeReeeRee st enseenseenteenseentensaens 22
2.3.16 Release Chip SELECHIONccuieiieiieiieeiietiee et eteste st e st e st ete e e e ateestesseeseenseenseessesssesseesseesseenseenseensesssenseansenns 23

2/ 44

MSING Technologies Pre. Lid.

Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674

Tel: +65 69268090

Email: salesi@mnsing com.sg

NSING nsing.com.sg

2.3.17 RelEaSE THE BUS ...ttt ettt ettt et ettt set e s bt e s bt e nbe e bt eneeemeeeneeeneanneens 23
2A UART DEVICE. ..ottt ettt sttt a e s e b s e a e st a e st n e s a e s ne s 24
2.4.1 Introduction OFf UART ..ottt ettt ettt e ke e e e bt ee e satesbeesbeenbe e bt eneeeatesseesaeanaeans 24
2.4.2 ACCESS SETIal POIT DEVICE....cuui ittt ettt ettt ettt st esaee s bt e nte e bt eateeateeeeesaeenaeans 24
2.4.3 FINd Serial POIt DEVICE.eeiiiiiieiieiietietteeee ettt ettt st b et et e et seee s bt e s bt e nbeebeenteenteeseesaeenaeans 24
2.4.4 Open Serial POTt DIEVICEcocuiiiiiiieeietiet ettt ettt ettt ettt st e ke e e et e ee e saeesbeesbeenbe e bt eneeeateeseesneenseans 24
2.4.5 Control Serial POTt DEVICE.......cuiiiiiiiiietieeee ettt ettt ettt ettt st e sbee s bt e nbe e beenteenteebeesneenteans 25
2.4.0 TTanSIMIE DIAAoiuiiiieiiee ettt et ettt a et e bt et et ee e e et e ehee bt e bt e bt e bt enteeneeentenaeens 26
2.4.7 Set The Transmission Completion Callback FUNCHON.cccoiiiiiiiiiiiiieieeeee e 26
2.4.8 Set The Reception Callback FUNCHONoeiuiiiiiiiiiiiieieee ettt et saee e 27
2.4.9 RECEIVE DIALA. ...ttt ettt et e bttt et eeae e st e et e e bt e teentesmeesaeeesee bt e st e et enteeneeeneenneens 27
2.4.10 Close Serial POTt DEVICE.......eieiiuiietietietiete ettt et ettt ettt ettt e e e tesseesaeesaeenbeeseeneeeneeeneesseanseans 28
2.5 TPC DEVICE. ettt et s et s e h ettt Rttt 29
2.5.1 INtrOAUCHON OF I2C.....eeiiieeeeeeeeeecece ettt ettt ettt ss et et s et et et et e s easessses s s et et et et et et essanes s enenesesee 29
2.5.2 ACCESS I2C BUS DIEVICE ...ttt es et e ettt s e sen s s s en et et et et et et essanen s s enanesne 29
2.5.3 FINA T2C BUS DIEVICE ...ttt ettt es e es et s et et a et seassses s s st et et et et esessanen s s anenesne 29
T D 1 7 T 1 1) (< SRS 29
2.6 ADC DEVICE.....ueeutiteteeteettettetetesteetesteettestastesse s e seese et eeseaneansansanseas e et e eseaseensensenseeseaseeseaseansensansesseeseantansensensansessenas 31
2.6.1 INtrodUCHION OF ADICiiiiiie ettt ettt ettt e st e st e bt e te et e eeeesmeesaeeeseenseeseenteenteeneeeneenneans 31
2.0.2 ACCESS ADIC DEVICEcuveeuieiieeiie ettt ettt ettt ettt e ae e et e et e e st et e emeeemeesaeessee st enseeneeenteeneeeneenneens 31
2.0.3 FINA ADC DEVICE ...ttt ettt ettt ettt et e e tt e et et et eae e e et et e e st emteemtesmeesaeesseenseenseenteeneeenseeneanseens 31
2.6.4 ENable ADC CRANNELooouiiiiiiieiieeiieie ettt ettt ettt et e et e st e st e st et e ensesmeesneesseenseeseenseeneeeneenneenseens 31
2.6.5 Read ADC Channel Sampling ValUecc.oeiioiiiiiiieiieeet ettt sttt ettt eeeeeneesneens 32
2.6.6 Disable ADC CRANNELoiiiiiiiiieiei ettt et ettt et e st e st e bt et e eneesmeesseesseenseenseenseenseeneenneanseens 32
2T DAC DEVICE......cciiiiiteit ettt ettt ettt ettt e s a e s et e bt e et s ae e e ae e ea e et e et e e s e e e e saee s et saeesaeeneeaneeneeeanenneens 33
2.7.1 IntroduCtion OF DIACo oottt ettt ettt e st e et e bt e st et e eneesmeesseesseenseenseeneeeneeeneeeneenneens 33
2.77.2 ACCESS DAC DIEVICEcuveeuieeiie ettt ettt ettt ettt e st e e te e et et e et e eseees e et e enseeaseenseemeesseesseenseenseenseeneeeneeeneanseens 33
2.77.3 FINA DAC DEVICE ...ceuteeieeteeie ettt ettt et ettt e et e bt e ae e st e et e aeeeneees e et e e st easeemseemeesmeesseenseenseenseenseensesneanseens 33
2.7.4 Enable DAC CRANNELcc.oiiiiiiiiiieee ettt ettt ettt ettt et e e seeesseesseense e st eneeeneeeneesneenneens 33
2.7.5 Set DAC Channel OUtPUL VAIUEcoouiiiiiiiieiieieee ettt ettt et teseee st e st e ste e seenteenteeneeeneenneens 34
2.7.6 Disable DAC CRANNE]oooiiiiiiiiiieee ettt ettt e st e et et esaaesseesseenteeseeneeeneeeneesneanneens 34
2.8 CAN DEVICE..... ettt ettt ettt et ettt ettt et e sase s ae e s ae e st e st eas e e aeeeu e e bt et e eaneeanesanesaeesaee st emseenneennenunenseens 35
2.8.1 INtrodUCHION OF CAN.......iiiiiii ettt ettt et e te e st e et et e ese e s st e st enseenseensesnsesseesseenseenseensesnsesseesnsanseans 35
2.8.2 ACCESS CAN DEVICE ...eeuvieieeieeiieeeieeiieti et et et eteette st estte st ese e st eaeeeseesseeseenseenseensesnsesseesseenseenseensesnsesseennsanseens 35
2.8.3 FINA CAN DEVICE ...eeutieiieieeie et eieetieettett et eteeitesiteseee s st e st e st enseeseeeseesseeseanseenseensesnsesseesseenseanseensesnsesnsennsenseens 35
2.8.4 OPEIN CAN DEVICE....cveiieiteitititerie sttt ettt sttt ettt et ettt e b s bttt e b et sb e bt s bt bt e st et ebesae et e s bt ebeeae et ebenaenes 35
2.8.5 CONIOL CAN DEVICE ...cuvieiieiieiieeeieeiieitei ettt ete et estesteesaeese e st eseeeseessee st enseenseensesnsesseesseenseanseensesnsesseenssenseens 36
2.8.0 TIANSIMIL DIALAeevieiieiieie ettt ettt e st e st e e st et e e aeeeneeesee st e et e enseenseensesnsesaeesseenseenseenseenteenseeneenseens 36
2.8.7 Set Reception Callback FUNCHON.cceiiiiiriiiiiiireecec ettt ettt s 36
2.8.8 RECEIVE DIALA.......eiiiiiiieiiee ettt ettt st e st e te et e e et et e e st e st e et e enseenseensesasesneesseenseenseenseenseensenneenseens 37
2.8.9 ClOSE CAN AEVICE ..eeuveeuvieieeieeiieeeieettettett et esteesteetteseeesseeseesseenseenseaseesseaseenseenseensesnsesneesseenseanseensesnsennsennsenseens 37
2O HWTIMER DEVICE ..ottt e s st s 38
2.9.1 INtroduction OF TIMETceiiiriiriiriiitereete ettt ettt et b e bbbt et et sa e bt s bt ebe e bt et eaesaenbes 38
2.9.2 Access Hardware TIMET DEVICE.cc.eeueeiiiiriiriiriiniirieetet ettt ettt sttt ettt st be et et nbe e enes 38
3/ 44

MSING Technologies Pre. Lid.

Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674

Tel: +65 69268090

Email: salesi@mnsing com.sg

NSING

nsing.com.sg

2.9.3 FINA TIMET DIEVICEeentiiiiiit ettt ettt ettt ettt ettt e a e e st e et e e bt em b e eetesseesaeesbeenbeenseenteeaeeeneeaneanseans 38
2.9.4 OPEN TIMET DEVICE.eeteiuiiiii ittt ettt ettt ettt e a e e st e e bt e bt et e eetesaeesbeesbeenbeenbeenteenteeseesneanseens 38
2.9.5 Set Timeout Callback FUNCHIONoo.iiiuiiiiiieiieee ettt sttt a et et eaeesaeenaeens 39
2.9.6 CoNIOl TIMEL DIBVICEeeuteiuiiiiie ittt ettt ettt et e at e st e bt e bt et e ee e e sseesbeesbeenbeenbeenteemeeeseesneanaeens 39
2.9.7 Set TImer TIMEOUL VAIUEoooiiiiiiiiieiet ettt ettt st e saee s bt e bt e bt enteeneeeseesbeenaeans 39
2.9.8 Get Current TIMET VAIUE.cc.eiiiiiiiiee ettt ettt ettt ettt st e saee s bt e nbe e bt enteenteseeesbeenseens 40
2.9.1 ClOSE TIMET DIEVICEcoutieuieiiiieiie ettt ettt ettt et ettt e ae e st e bt e bt em e eetesseesaeesbeenbeenbeemteemeeeseesneanneans 40

2.10 WATCHDOG DEVICE ..ottt ettt ettt et st 41
2.10.1 Introduction Of WatChAOEoouiiiiiieie et ettt sttt esbe e bt et eateeaeeeaeenaeens 41
2.10.2 Access WatChAOZ DEVICE......ccui ittt ettt ettt ettt ettt ettt s et e s bt e s bt e nteebeenteenteeeeesaeenteans 41
2.10.3 FINA WatCRAOE. ... oottt ettt ettt et e et e et e bt e bt et e en e smeesaeesseenseenseenteenteensesneanseans 41
2.10.4 Initializ€ WatCRAOZ ... c..eeieeie ettt ettt ettt e bt e et e et esseesaeessee bt e bt enteeneeeneesneenneans 41
2.10.5 Control WatCRAOEZc.eeeiieie ettt ettt ettt e et e bt e e et e entesseesaeesseesteenseeneeeneeeneeeneanseens 42
2.10.6 Feed Dog in The Idle Thread HOOK FUNCHONcceiiiiiiiiiiieii ettt 42
2.10.7 CLOSE WaCRAOZ ...ttt ettt ettt et ettt e et e st e et e et et e emeesmeesaeeeseenseenseenteenseenseeneanneans 42

3 VERSION HISTORY 43
4 DISCLAIMER 44

4/ 44
NSING Technologies Pre. Lid. _
Add: NSING, Teletech Park #02-28, 20 Science Park Road,

Singapore 117674
Tel: +65 69268090

Email: salesi@mnsing com.sg

NSING www.nsing.com.sg

1 Overview

1.1 Brief Introduction

This document mainly describes the RT Thread device registration of the N32G45x series, N32G4FR series, N32WB452
series, N32G43x series, N32L40x series, and N32L43x series MCUs, so that users can quickly familiarize with the

RT Thread device driver.

5 /44
NSING Technologies Pre, Lid.
Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674
Tel: +65 69268090

Emal: salesi@nsing. com.sg

WWW.nsing.com.sg

NSING

2 Device Registration
2.1 I/O Device

2.1.1 Introduction of I/0 Device

RT-Thread provides a simple I/O device model framework, as shown in Figure 2-1. It is located between hardware and
applications, divided into three layers from top to bottom: I/O device management layer, device driver framework layer,

device driver layer.

Figure 2-1 I/O Device Model Framework

Application
/0 device management interface
1/O device Character device . SPI slave device .
management layer type Block device type SPI bus type type 12C bus type | Other device types
Device driver Serial device driver SPI device driver 12C device driver PIN device driver
framework layer framework framework framework framework
Device driver | STM32/NXP Va”‘;ususpl SPI Flash dii STM32/NXP STM32/NXP
cevice driver fayer serial driver controfier a ver 12C driver GPIO driver
drivers
Hardware

The application obtains the correct device driver through the I/O device management interface, and then interacts for data

(or control) with the underlying I/O hardware device through this device driver.

The I/0 device management layer encapsulates device driver programs. Application programs access underlying devices
through standard interfaces provided by the I/O device layer. Upgrading or replacing device drivers does not affect upper-
layer application. In this way, the code related to the hardware operation of the device can exist independently of the
application program, and both parties only need to pay attention to the implementation of their own functions, which

reduces the coupling and complexity of the code and improves the reliability of the system.

The device driver framework layer is an abstraction of the same type of hardware device drivers. It extracts the same parts
from the same type of hardware device drivers from different manufacturers, leaving interfaces for the different parts to be

implemented by the driver program.

The device driver layer is a group of programs that drive hardware devices to work and enable access to hardware devices.
It is responsible for creating and registering I/O devices. For devices with simple operation logic, the device can be directly
registered in the I/O device manager without going through the device driver framework layer. The use sequence diagram

as shown in the figure below, mainly has the following two points:

6 /44
NSING Technologies Pre, Lid.
Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674
Tel: +65 69268000
Emal: salesi@nsing. com.sg

NSING

WWW.nsing.com.sg

B The device driver creates a device instance with hardware access capability according to the device model definition.

The device is registered in the I/O device manager through the rt device register() interface.

B The application finds the device through the rt device find() interface and then uses the I/O device management

interface to access the hardware.

Figure 2-2 I/0 Device Model Framework

Application

I/0O device
manager

Device driver

Register 1/0 device
rt_device register()

::l Create

device

Find device rt_device find()

Open device rt_device open()

Application

>

L
Read data rt_device read() :
>

| read()
Close device rt_device close() :
|
|
|

I/O device
manager

Device driver

2.1.2 Create and Register 1/0 Device

The device driver layer is responsible for creating device instances and registering them in the I/O device manager. Device

instances can be created statically or dynamically using the following interface:

rt_device trt device create(int type, int attach_size)

Parameter

Description

type

Device type

attach size

User data size

Return -
The device handle Success
RT NULL Create failed, dynamic memory allocation failed

2.1.3 Access I/0 Device

The application program accesses the hardware device through the I/O device management interface. After the device

driver is implemented, the application program can access the hardware. Figure 2-3 shows the mapping between the I/O

device management interface and the operation methods of the I/O device.

7 /44

NSING Technologies Pie,

Add: NSING, Teletech Park #02-28, 20 Science Park Road,

Singapore 117674
Tel: +65 692680400
Emal: salesi@nsing. com.sg

Ltd.

NSING WWW.Nsing.com.sg

Figure 2-3 I/0 Device Interface

I/O device management I/O device opration
interface menthod
rt_device init() init()
rt_device open() open()
. rt_device close() close() 4\
Application : Hardware
rt_device read() read() —‘/
rt_device write() write()
rt_device control() control()

2.1.4 Find Device

The application obtains a device handle based on the device name so that it can operate the device. The function for finding

device is as follows:

rt_device trt device find(const char* name)

Parameter Description

name Device name

Return -

The device handle If a device is found, the device handle is returned
RT NULL The corresponding device object was not found

2.1.5 Initialize Device

After obtaining the device handle, the application can initialize the device using the following function:

rt_err trt_device init(rt_device tdev)

Parameter Description

dev The device handle

Return -

RT_EOK The device is successfully initialized
Error code Failed to initialize device

2.1.6 Open/Close Device

Through the device handle, the application can open and close the device. When the device is opened, it will detect whether
the device has been initialized. If it is not initialized, the initialization interface will be called by default to initialize the

device. Open the device by using the following function:

rt_err trt device open(rt device tdev, rt uintl6 t oflags)

Parameter Description

8 /44
NSING Technologies Pre, Lid.
Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674
Tel: +65 69268000
Emal: salesi@nsing. com.sg

NSING

WWW.nsing.com.sg

dev The device handle
oflags The device opens the mode flag
Return -
RT EOK Device open successfully
If the parameter specified when the device is registered includes the
-RT EBUSY RT DEVICE FLAG STANDALONE parameter, the device will not be allowed

to open repeatedly

Other error codes

Failed to open device

Close device by using the following function:

rt_err_trt device close(rt_device t dev)

Parameter Description

dev The device handle

Return -

RT _EOK Device close successfully

-RT_ERROR The device has been completely closed and cannot be closed repeatedly

Other error codes

Failed to close device

2.1.7 Control Device

Through the command control word, the application program can also control the device through the following function:

rt_err_trt_device control(rt_device tdev, rt_uint8 t cmd, void* arg)

Parameter Description

dev The device handle

cmd Command control word, which is usually associated with the device driver
arg Control parameter

Return -

RT _EOK Function executed successfully

-RT_ENOSYS Execution failed, dev is empty

Other error codes

Failed to execute

2.1.8 Read/Write Device

To read data from the device, you can use the following function:

rt size trt device read(rt device t dev, rt off t pos, void* buffer, rt_size t size)

Parameter Description

dev The device handle

pos Read data offset

buffer Memory buffer pointer, the read data will be saved in the buffer
size The size of the read data

Return -

The actual size of the data read

If it is a character device, the returned size is in byte, if it is a block device, the

returned size is in block

9 /44
NSING Technologies Pre, Lid.
Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674
Tel: +65 69268090
Emal: salesi@nsing. com.sg

WWW.nsing.com.sg

NSING

| 0 You need to read the current thread's errno to determine the error status

To write data to the device, you can use the following function:

rt_size trt device write(rt_device t dev, rt off t pos, const void* buffer, rt_size t size)

Parameter Description

dev The device handle

pos Write data offset

buffer Memory buffer pointer, where the data to be written is placed
size The size of the written data

Return -

)) If it is a character device, the returned size is in byte, if it is a block device, the
The actual size of the data to be written o
returned size is in block

0 You need to read the current thread's errno to determine the error status

2.1.9 Data Transmission and Reception Callback

When the hardware device receives data, the following function can call back another function to set the data reception

indication and notify the upper-layer application thread that data has arrived:

rt_err_trt device set rx_indicate(rt device tdev, rt err t (*rx_ind)(rt_device tdev, rt_size t size)
Parameter Description

dev The device handle

rx_ind Callback function pointer

Return -

RT EOK Set successfully

The callback function for this function is provided by the user. When the hardware device receives data, this function will
be called back and the received data length will be passed to the upper-layer application in the size parameter. The upper

application thread should read data from the device immediately after receiving the instruction.

When the application calls rt_device write() to write data, if the underlying hardware supports automatic transmitting, the
upper-layer application can set a callback function. This callback function will be called after the underlying hardware has
finished transmitting data (such as when the DMA transfer is complete or when a completion interrupt is triggered
indicating that FIFO has been fully written). You can set the device to transmit the completion indication through the

following function:

rt_err_trt device set tx complete(rt_device tdev, rt_err t (*tx_done)(rt device t dev,void *buffer))
Parameter Description

dev The device handle

tx_done Callback function pointer

Return -

RT EOK Set successfully

The callback function for this function is provided by the user. When the hardware device finishes transmitting data, the
driver will callback this function and pass the address buffer of the transmitted data block as a parameter to the upper-layer
application. When the upper-layer application (thread) receives the instruction, it will release the buffer memory block or

use it as the buffer for the next write data according to the situation of transmit buffer.

10 /44
NSING Technologies Pre, Lid.
Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674
Tel: +65 69268000
Emal: salesi@nsing. com.sg

NSING \'JW‘.'J.HSiﬂg.EDH'I:.Sg

2.2 PIN Device

2.2.1 Introduction of PIN

The pins on the chip are generally divided into 4 categories: power supply, clock, control and I/O. In terms of usage mode,
I/O ports are further divided into general-purpose input/output, abbreviated as GPIO, and function multiplexed I/O (such
as SPI/I2C/UART, etc.).

Most MCU pins have more than one function. Different pins have different internal structures and different functions. The

actual function of the pin can be switched with different configurations. The general I/O port has the following features:
Programmable control interrupt: the interrupt trigger mode can be configured, as shown in Figure 2-4:

Figure 2-4 PIN Interrupt Trigger Mode

Rising edge trigger: used to detect
the rising edge without jitter

J Falling edge trigger: used to detect
the falling edge without jitter

v

High level trigger: used to detect
high level state

Low level trigger: used to detect
—- — low level state

Y Double edge trigger: used to detect
both edges without jitter

The input and output mode can be controlled.

Output modes generally include: push-pull, open-drain, pull-up and pull-down. When the pin is in output mode, the

connected peripheral device can be controlled by configuring the level state of the pin output to be high or low.

Input modes generally include: floating, pull-up, pull-down and analog. When the pin is in input mode, the level state of

the pin can be read, i.e. high level or low level.

2.2.2 Access PIN Device

The application accesses GPIO through the PIN device management interface provided by RT-Thread. The relevant

interfaces are as follows:

Function Description

rt_pin_mode() Set pin mode

rt_pin_write() Set pin level

rt_pin_read() Read pin level

rt_pin_attach_irq() Bind pin interrupt callback function
11 /44

NSING Technologies Pre, Lid.

Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674

Tel: +65 69268050

Emal: salesi@nsing. com.sg

NSING

WWW.nsing.com.sg

rt_pin_irq_enable()

Enable pin interrupt

rt_pin_detach_irq()

Breakout pin interrupt callback function

2.2.3 Set Pin Mode

The input or output mode of the pin should be set before it is used. This can be done by using the following function:

void rt_pin_mode(rt base t pin, rt_base t mode)

Parameter Description
pin Pin number
mode Pin worke mode

2.2.4 Set Pin Level

The function for setting the pin output level is as follows:

void rt_pin_write(rt_base t pin, rt_base t value)

Parameter Description

pin Pin number

Logical level value, which can be one of two macro definition values: PIN. LOW

low level or PIN_HIGH high level

value

2.2.5 Read Pin Level

The function for reading pin level is as follows:

int rt_pin_read(rt_base t pin)

Parameter Description
pin Pin number
Return -

PIN_ LOW Low level
PIN_HIGH High level

2.2.6 Bind Pin Interrupt Callback Function

To use the interrupt function of a pin, you can use the following function to configure a pin as an interrupt trigger mode
and bind an interrupt callback function to the corresponding pin. When the pin interrupt occurs, the callback function will

be executed:

rt_err_trt pin_attach irq(rt_int32 t pin, rt uint32 t mode, void (*hdr)(void *args), void *args)

Parameter Description
pin Pin number
mode Interrupt trigger mode
hdr Interrupt the callback function, which needs to be defined by the user
args The parameter of the interrupt callback function, set to RT NULL if not needed
Return -
12 /44

NSING Technologies Pre, Lid.

Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674

Tel: +65 69268000

Emal: salesi@nsing. com.sg

NSING

WWW.nsing.com.sg

RT _EOK

Binding success

Error code

Binding failed

2.2.7 Enable Pin Interrupt

After binding the pin interrupt callback, you use the following function to enable pin interrupt:

rt_err trt pin_irq enable(rt base t pin, rt_uint32 t enabled)

Parameter Description

pin Pin number

enabled PIN_TRQ_ENABLE (enabled) or PIN IRQ DISABLE (disabled)
Return -

RT EOK Enable success

Error code Enable failed

2.2.8 Breakout Pin Interrupt Callback Function

You can use the following function to breakout pin interrupt callback function:

rt_err_trt pin detach irq(rt int32 t pin)

Parameter Description
pin Pin number
Return -
RT EOK Breakout success
Error code Breakout failed
13 /44

NSING Technologies Pre, Lid.

Add: NSING, Teletech Park #02-28, 20 Science Park Road,

Singapore 117674
Tel: +65 692680400
Emal: salesi@nsing. com.sg

NSING WWW.Nsing.com.sg

2.3 SPI Device

2.3.1 Introduction of SPI

SPI (Serial Peripheral Interface) is a high-speed, full-duplex, synchronous communication bus, commonly used for short

distance communication. SPI generally uses four wires for communication, as shown in Figure 2-5:

Figure 2-5 SPI Communication

SCLK » SCLK
MOSI » MOSI
SPI Master SPI Slave
MISO [« MISO
CS » CS

MOSI: SPI bus master output/slave input data wire.
MISO: SPI bus master input/slave output data wire.

SCLK: serial clock wire. The master device outputs clock signal to the slave device.

CS: slave device select wire (chip selection). Also called SS, CSB, CSN, EN, etc., the master device outputs the

chip selection signal to the slave device

SPI operates in a master-slave mode, usually with one master device and one or more slave devices. The communication
is initiated by the master device, the master device selects the slave device to be communicated through CS, and then
provides a clock signal to the slave device through SCLK. The data to be transmitted by the master device is output to the
slave device through MOSI, while receiving the data transmitted by the slave device through MISO.

As shown in Figure 2-6, the chip has two SPI controllers. The SPI controller corresponds to the SPI master device. Each
SPI controller can connect to multiple SPI slave devices. Slave devices mounted on the same SPI controller share 3 signal
pins: SCK, MISO, MOS]I, but the CS pin of each slave device is independent.

14 /44
NSING Technologies Pre, Lid.
Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674
Tel: +65 69268000
Emal: salesi@nsing. com.sg

NSING WWW.Nsing.com.sg

Figure 2-6 SPI Controller

CS1

¢ CSo

dev0 devl

SPI controller 0

MCU ¢ cs2 y Cs3

SPI controller 1

The master device selects the slave device by controlling the CS pin, which is generally active at low level. Only one CS
pin on an SPI master device is in a valid state at any one time, and the slave device connected to this valid CS pin can

communicate with the master device at this time.

2.3.2 Mount SPI Device

The SPI device needs to be mounted to the registered SPI bus.

rt_err trt spi bus attach device(struct rt_spi_device *device,

const char *name,

const char *bus_name,

void *user_data)
Parameter Description
device SPI device handle
name SPI device name
bus_name SPI bus name
user_data User data pointer
Return -
RT_EOK Success
Other error codes Failed

This function is used to mount an SPI device to the specified SPI bus, register the SPI device with the kernel, and save

user_data to the SPI device control block.

15 /44
NSING Technologies Pre, Lid.
Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674
Tel: +65 69268000
Emal: salesi@nsing. com.sg

NSING WWW.Nsing.com.sg

Generally, the SPI bus is named spix, and the SPI device is named spixy. For example, spil0 indicates the device 0 mounted
on the spil bus. user data is generally the CS pin pointer of the SPI device. The SPI controller will operate this pin for chip

selection during data transmission.

Mount the SPI device to the bus using the following function:

rt_err_trt hw_spi device attach(const char *bus_name,
const char *device name,

GPIO_TypeDef *cs_gpiox,

uintl6_t cs_gpio_pin)

2.3.3 Configure SPI Device

After mounting an SPI device to the SPI bus, you need to set transmission parameters for the SPI device.

rt_err_trt_spi_configure(struct rt_spi_device *device, struct rt_spi_configuration *cfg)
Parameter Description

device SPI device handle

cfg SPI configuration parameter pointer
Return -

RT EOK Success

This function will save the configuration parameters pointed to by cfg in the control block of the SPI device, which will be

used when transferring data. The prototype of struct rt_spi_configuration is as follows:

struct rt_spi_configuration
{
rt uint8 t mode; // mode
rt uint8 t data width; // data width, 8 bits, 16 bits, 32 bits
rt uintl6 t reserved; // reserved
rt uint32 t max hz; // maximum frequency
3

2.3.4 Access SPI Device

In general, the SPI device of the MCU is used as a master that communicates with slave devices. In RT-Thread, the SPI
master is virtualized as an SPI bus device. The application uses the SPI device management interface to access the SPI

slave device. The main interfaces are as follows:

Function Description
rt_device find() Obtain a device handle based on the SPI device name
rt_spi_transfer message() Customize transmission data
rt_spi_transfer() Transfer data once
rt_spi_send() Send data once
rt_spi_recv() Receive data once
rt_spi_send_then_send() Send twice in a row
rt_spi_send_then_recv() Send first, then receive
16 /44

NSING Technologies Pre, Lid.

Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674

Tel: +65 69268000

Emal: salesi@nsing. com.sg

NSING

2.3.5 Find SPI Device

WWW.nsing.com.sg

Before using the SPI device, the device handle should be obtained according to the name of the SPI device, and then the

SPI device can be operated. The function for finding device is as follows:

rt_device trt device find(const char* name)

Parameter Description
name Device name
Return -

Device handle If a device

is found, the device handle is returned

RT NULL

The corresponding device object was not found

2.3.6 Customize Transmission Data

After obtaining the SPI device handle, you can use the SPI device management interface to access the SPI device to

transmit and receive data. Messages can be transferred using the following function:

struct rt_spi_message *rt_spi_transfer message(struct rt_spi_device *device,struct rt_spi_message *message)
Parameter Description

Device SPI device handle

Message Message pointer

Return -

RT NULL Successfully sent

non-null pointer Send failed, return pointer to remaining unsent message

This function can transmit a string of messages. The user can customize the values of each parameter of the message

structure to be transmitted, which makes it easy to control the data transmission mode. The prototype of struct

rt_spi_message is as follows:

struct rt_spi_message

{
const void *send_buf; // Send buffer pointer
void *recv_buf; /I Receive buffer pointer
rt_size t length; // Number of bytes of data sent/received
struct rt_spi_message *next; /I A pointer to the next message
unsigned cs_take 1 1; /I Select
unsigned cs_release 11 // Release

3

sendbuf is the send buffer pointer. When its value is RT _NULL, it means that the current transmission is in a receive-only

state, and no data needs to be sent.

recvbuf is the receive buffer pointer. When its value is RT _NULL, it means that this transmission is in a send-only state,

and the received data does not need to be saved, so the received data is discarded directly.

The unit of length is word, which means when the data length is 8 bits, each length occupies 1 byte; when the data length

is 16 bits, each length occupies 2 bytes.

17 /44

NSING Technologies Pre, Lid.

Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674

Tel: +65 69268000

Emal: salesi@nsing. com.sg

NSING WWW.Nsing.com.sg

The parameter next is a pointer to the next message to be sent. If only one message is sent, the value of this pointer is
RT NULL. Multiple messages to be transmitted are connected together in the form of a singly linked list through the next

pointer.

When the value of cs_take is 1, it means that the corresponding CS is set to a valid state before transmitting data. When

the value of cs_release is 1, it means that the corresponding CS will be released after the data transmission ends.

2.3.7 Transfer Data Once

If the data is transmitted only once, the following function can be used:

rt_size trt_spi_transfer(struct rt_spi_device *device, const void *send_buf, void *recv_buf, rt_size t length)
Parameter Description

device SPI device handle

send buf Send data buffer pointer

recv_buf Receive data buffer pointer

length Number of bytes of data sent/received

Return -

0 Transfer failed

Non-zero value Number of bytes successfully transferred

This function is equivalent to calling rt_spi_transfer message() to transfer a message. The chip selection is selected when
the data is sent, and the chip selection is released when the function returns. The message parameter configuration is as

follows:

struct rt_spi_message msg;

msg.send_buf =send buf;

msg.recv_buf =recv_buf;
msg.length = length;
msg.cs_take =1,
msg.cs_release =1;
msg.next =RT NULL;

2.3.8 Send Data Once

If the data is sent only once and the received data is ignored, the following function can be used:

rt size trt spi_send(struct rt_spi_device *device, const void *send buf, rt_size t length)
Parameter Description

device SPI device handle

send_buf Send data buffer pointer

length Number of bytes of sent data
Return -

0 Send failed

Non-zero value Number of bytes successfully sent

Call this function to send the data of the buffer pointed to by send buf, ignoring the received data, this function is the

18 /44
NSING Technologies Pre, Lid.
Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674
Tel: +65 69268000
Emal: salesi@nsing. com.sg

NSING WWW.Nsing.com.sg

encapsulation of the rt_spi_transfer() function.

This function is equivalent to calling rt_spi_transfer message() to transfer a message. The chip selection is selected when

data is sent, and the chip selection is released when the function returns. The message parameter is configured as follows:

struct rt_spi_message msg;

msg.send buf =send buf;
msg.recv_buf =RT NULL;

msg.length = length;
msg.cs_take =1;
msg.cs_release =1;
msg.next =RT NULL;

2.3.9 Receive Data Once

If the data is received only once, the following function can be used:

rt_size trt_spi_recv(struct rt_spi_device *device, void *recv_buf, rt_size t length)

Parameter Description

device SPI device handle

recv_buf Receive data buffer pointer

length Number of bytes of received data
Return -

0 Receive failed

Non-zero value Number of bytes successfully received

Call this function to receive data and save it to the buffer pointed to by recv_buf. This function is a encapsulation of the
rt_spi_transfer() function. The SPI bus protocol specifies that the clock can only be generated by the master device, so

when receiving data, the master device will send data 0XFF.

This function is equivalent to calling rt_spi_transfer message() to transfer a message, the chip selection is selected when
it starts to receive data, and the chip selection is released when the function returns. The message parameter is configured

as follows:

struct rt_spi_message msg;

msg.send buf =RT NULL;

msg.recv_buf =recv_buf;
msg.length = length;
msg.cs_take =1;

msg.cs_release =1;

msg.next =RT_NULL;

2.3.10 Send Data Twice in Succession

If you need to send the data of 2 buffers in succession, and the chip selection is not released in between, you can call the

following function:

19 /44
NSING Technologies Pre, Lid.
Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674
Tel: +65 69268000
Emal: salesi@nsing. com.sg

NSING WWW.Nsing.com.sg

rt_err_trt spi_send_then send(struct rt_spi_device *device,

const void *send_bufl,

rt_size t send lengthl,

const void *send_buf2,

rt_size t send length2)
Parameter Description
device SPI device handle
send_bufl Send data buffer 1 pointer
send_lengthl Send data buffer 1 data bytes
send_buf2 Send data buffer 2 pointer
send_length2 Send data buffer 2 data bytes
Return -
RT EOK Send success
-RT_EIO Send failed

This function can send two buffers in succession, and ignore the received data. The chip selection is selected when

send_bufl is sent, and the chip selection is released after send buf2 is sent.

This function is used to write a piece of data to the SPI device. The first time it sends the command and address data, and
the second time it sends the specified length of data. The reason why it is sent twice instead of combined into one data
block, or called rt_spi_send() twice, is because in most data write operations, the command and address need to be sent
first, and the length is generally only a few bytes. If it is sent together with the following data, memory space application
and a large amount of data handling will be required. If rt_spi_send() is called twice, the chip selection will be released
after the command and address are sent. Most SPI devices rely on setting the chip selection once to indicate the start of a
command. Therefore, if the chip selection is released after sending the command or address data, and the operation will be
discarded.

This function is equivalent to calling rt spi_transfer message() to transfer two messages. The message parameter

configuration is as follows:

struct rt_spi_message msgl, msg2;

msgl.send buf =send bufl;
msgl.recv_buf =RT NULL;
msgl.length =send_lengthl;
msgl.cs take =1,
msgl.cs_release =0;

msgl.next = &msg2;

msg2.send buf =send buf2;
msg2.recv_buf =RT NULL;
msg2.length =send_length2;
msg2.cs_take =0;
msg2.cs_release =1;

msg2.next =RT NULL;

20 /44
NSING Technologies Pre, Lid.
Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674
Tel: +65 69268090
Emal: salesi@nsing. com.sg

NSING WWW.Nsing.com.sg

2.3.11 Send First, Then Receive

If you need to send data to the slave device first, and then receive the data sent from the slave device, and the chip selection

is not released in between, you can call the following function:

rt_err_trt spi_send then recv(struct rt_spi_device *device,

const void *send_buf,

rt_size t send_length,

void *recv_buf,

rt_size t recv_length)
Parameter Description
device SPI slave device handle
send buf Send data buffer pointer
send_length Send data buffer data bytes
recv_buf Receive data buffer pointer
recv_length Received data bytes
Return -
RT EOK Success
-RT_EIO Failed

The chip selection is selected when sending the first piece of data of send_buf, at this time the received data will be ignored.
Then the second piece of data is sent, at this time the master device will send the data OXFF, and the received data will be

stored in recv_buf. The chip selection is released when the function returns.

This function is suitable for reading a piece of data from the SPI slave device. For the first time, some commands and

address data will be sent first, and then the data of the specified length will be received.

This function is equivalent to calling rt spi_transfer message() to transfer two messages. The message parameter

configuration is as follows:

struct rt_spi_message msgl, msg2;

msgl.send buf =send buf;
msgl.recv_buf =RT NULL;
msgl.length = send_length;
msgl.cs take =1;

msgl.cs release =0;

msgl.next = &msg2;

msg2.send buf =RT NULL;

msg2.recv_buf =recv_buf;
msg2.length =recv_length;
msg2.cs_take =0;

msg2.cs_release = 1;

s

msg2.next =RT NULL;

The SPI device management module also provides rt_spi_sendrecv8() and rt_spi_sendrecv16() functions, both of which

21 /44
NSING Technologies Pre, Lid.
Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674
Tel: +65 69268090
Emal: salesi@nsing. com.sg

NSING WWW.Nsing.com.sg

are encapsulations of this function, rt_spi_sendrecv8() sends one byte data and receives one byte data, rt_spi_sendrecv16()

sends 2 bytes data and receive 2 bytes data.

2.3.12 Special Application Scenario

In some special usage scenarios, a device wants to monopolize the bus for a period of time, and during this period, the chip
selection must be kept valid, and the data transmission may be intermittent during this period, you can use the relevant
interface according to the steps shown. The data transfer function must use rt_spi_transfer message(), and the chip selection
control fields cs_take and cs_release of each message to be transferred in this function must be set to 0, because the chip

selection has already used other interface control, and does not need to be controlled during data transmission. .

2.3.13 Get The Bus

In the case of multi-threading, the same SPI bus may be used in different threads. In order to prevent the loss of data
being transmitted by the SPI bus, the slave device needs to obtain the right to use the SPI bus before starting to transmit
data, only after the acquisition is successful, the bus can be used to transmit data. The following function can be used to

acquire the SPI bus:

rt_err_trt_spi_take bus(struct rt_spi_device *device)

Parameter Description
device SPI device handle
Return -

RT EOK Success

Error code Failed

2.3.14 Select Chip Selection

After obtaining the right to use the bus from the device, you need to set the corresponding chip selection signal to be valid.

You can use the following function to select the chip selection:

rt_err trt_spi take(struct rt_spi_device *device)

Parameter Description
device SPI device handle
Return -

0 Success

Error code Failed

2.3.15 Add A Message

When rt_spi_transfer message() is used to transfer messages, all the messages to be transferred are linked in a one-way

list. You can add a new message to the list by using the following function:

void rt_spi_message append(struct rt_spi_message *list, struct rt_spi_message *message)
Parameter Description
list The node of the linked list of messages to be transmitted
message New message pointer
22 /44

NSING Technologies Pre, Lid.

Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674

Tel: +65 69268000

Emal: salesi@nsing. com.sg

NSING WWW.Nsing.com.sg

2.3.16 Release Chip Selection

After the slave data transmission is completed, the chip selection needs to be released. The following function can be used

to release the chip selection:

rt_err_trt_spi_release(struct rt_spi_device *device)

Parameter Description
device SPI device handle
Return -

0 Success

Error code Failed

2.3.17 Release The Bus

When the slave device is not using the SPI bus to transfer data, the bus must be released as soon as possible so that other

slave devices can use the SPI bus to transfer data. The bus can be released using the following function:

rt_err trt spi release bus(struct rt_spi_device *device)
Parameter Description
device SPI device handle
Return -
RT EOK Success

23 /44

NSING Technologies Pre, Lid.

Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674

Tel: +65 69268090

Emal: salesi@nsing. com.sg

NSING

2.4 UART Device

2.4.1 Introduction of UART

WWW.nsing.com.sg

Universal Asynchronous Receiver/Transmitter (UART), as a kind of asynchronous serial communication protocol, operates

by transmitting each character of the transmitted data bit by bit. It is the most commonly used data bus in application

development.

2.4.2 Access Serial Port Device

The application program accesses serial port through the I/O device management interfaces provided by RT-Thread. The

interfaces are as follows:

Function

Description

rt_device find()

Find device

rt_device open()

Open device

rt_device read()

Read data

rt_device write()

Write data

rt_device control()

Control device

rt_device set rx indicate()

Set the receive callback function

rt_device set tx complete()

Set the send completion callback function

rt_device close()

Close device

2.4.3 Find Serial Port Device

The application program obtains the device handle according to the serial device name, and then can operate the serial

device. The function for finding device is as follows:

rt_device trt device find(const char* name)

Parameter Description

name Device name

Return -

The device handle If a device is found, the device handle is returned
RT NULL The corresponding device object was not found

2.4.4 Open Serial Port Device

Through the device handle, the application

the device has been initialized. If it is not

can open and close the device. When the device is opened, it will detect whether

initialized, the initialization interface will be called by default to initialize the

device. You can open the device through the following function:

rt_err_trt_device open(rt device tdev, rt uintl6_t oflags)

Parameter Description
dev The device handle
oflags Device mode flag

24 /44
NSING Technologies Pre, Lid.
Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674
Tel: +65 69268000
Emal: salesi@nsing. com.sg

NSING

WWW.nsing.com.sg

open repeatedly

Return -
RT _EOK Device opened successfully
If the parameter specified when the device is registered includes the
-RT_EBUSY RT_DEVICE FLAG_STANDALONE parameter, the device will not be allowed to

Other error codes

Device open failed

The oflags parameter supports the following values (multiple values can be supported in the form of OR):

#define RT DEVICE FLAG STREAM

/* Receive mode parameter */
#define RT_DEVICE_FLAG_INT_RX
#define RT_DEVICE_FLAG_DMA_RX

/* Send mode parameter */
#define RT_DEVICE_FLAG_INT TX
#define RT_DEVICE_FLAG_DMA_TX

0x040 /* Stream mode */

0x100 /* Interrupt receive mode */

0x200 /* DMA receive mode */

0x400 /* Interrupt send mode */
0x800 /* DMA send mode */

There are three modes for serial port data reception and transmission: interrupt mode, polling mode, and DMA mode. When

in use, only one of these three modes can be selected. If the parameter oflags does not specify the interrupt mode or DMA

mode, the polling mode is used by default.

The DMA transmission does not require the CPU to directly control the transmission, nor does it have the process of

retaining and restoring the scene like the interrupt processing method. A direct data transfer path is created for RAM and

I/O devices through the DMA controller, which saves CPU resources for other operations. Using DMA transfers can

continuously receive or transmit a piece of information without interruption or delay, which is very useful when

communication is frequent or when there are large pieces of information to be transferred.

2.4.5 Control Serial Port Device

Through the control interface, the application program can configure the serial port device, such as baud rate, data bit,

check bit, receive buffer size, stop bit and other parameters modification. The control function is as follows:

rt_err_trt_device control(rt_device tdev, rt_uint8 t cmd, void* arg)

Parameter Description

dev The device handle

cmd Command control word, available value:RT DEVICE CTRL CONFIG
arg Control parameter, available type: struct serial configure

Return -

RT EOK Function executed successfully

-RT _ENOSYS Execution failed, dev is empty

Other error codes

Execution failed

The prototype of the control parameter structure struct serial configure is as follows:

struct serial_configure

{

25 /44

NSING Technologies Pre, Lid.

Add: NSING, Teletech Park #02-28, 20 Science Park Road,

Singapore 117674
Tel: +65 69268000
Emal: salesi@nsing. com.sg

NSING WWW.Nsing.com.sg

rt uint32_t baud rate; /* Baud rate */
rt uint32_t data_bits 4; /* Data bits */
rt_ uint32_t stop_bits 2; /* Stop bit */

rt_ uint32_t parity 25 /* Parity bit */

rt uint32_t bit_order :1; /* The high value is in front or the low value is in front */
rt uint32_t invert :1; /* Mode */

rt uint32_t bufsz :16; /* Receive data buffer size */

rt uint32_t reserved 4; /* Reserved bit */

}s

The default serial port configuration provided by RT-Thread is as follows, meaning that each serial port device in the RT-

Thread system uses the following configuration by default:

#define RT_SERIAL CONFIG_DEFAULT \

{ \
BAUD_RATE 115200, /* 115200 bits/s */ \
DATA_BITS 8, /* 8 data bits */ \
STOP_BITS 1, /* 1 stop bit */ \
PARITY_NONE, /* No parity */ \
BIT ORDER _LSB, /* LSB first sent */ \
NRZ NORMAL, /* Normal mode */ \
RT_SERIAL RB BUFSZ, /* Buffer size */ \
0 \

}

If the actual configuration parameters of the serial port are inconsistent with the default configuration parameters, the user
can modify them through the application code. Modify serial port configuration parameters, such as baud rate, data bits,

parity bits, buffer receiving buffsize, stop bits, etc.

2.4.6 Transmit Data

To write data to the serial port, you can use the following function:

rt_size trt device write(rt_device tdev, rt off t pos, const void* buffer, rt_size t size)

Parameter Description

dev The device handle

pos Write data offset, this parameter is not used by serial device

buffer Memory buffer pointer, where the data to be written is placed

size The size of the written data

Return -

The actual size of the data to be written If it is a character device, the return size is in byte

0 You need to read the current thread's errno to determine the error status

2.4.7 Set The Transmission Completion Callback Function

When the application program calls rt _device write() to write data, if the underlying hardware can support automatic

transmission, the upper-layer application can set a callback function. This callback function will be called after the

26 /44
NSING Technologies Pre, Lid.
Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674
Tel: +65 69268000
Emal: salesi@nsing. com.sg

NSING WWW.Nsing.com.sg

underlying hardware data transmission is completed (such as when the DMA transfer is completed or when a completion
interrupt is triggered indicating that the FIFO has been written). You can set the device to transmit the completion indication

through the following function:

rt_err_trt device set tx_complete(rt _device tdev, rt_err t (*tx_done)(rt_device t dev, void *buffer))
Parameter Description

dev The device handle

tx_done Callback function pointer

Return -

RT EOK Set successfully

The callback function for this function is provided by the user. When the hardware device finishes transmitting data, the
device driver will call back this function and pass address buffer of the transmitted data block as a parameter to the upper-
layer application. When the upper-layer application (thread) receives the instruction, it will release the buffer memory block

or use it as the buffer for the next write data according to the situation of transmit buffer.

2.4.8 Set The Reception Callback Function

The data receiving indication can be set by the following function. When the serial port receives data, it notifies the upper

application thread that data arrives:

rt_err_trt device set rx indicate(rt device tdev, rt err t (*rx_ind)(rt_device tdev, rt size t size))
Parameter Description

dev The device handle

rx_ind Callback function pointer

dev Device handle (callback function parameter)

size Buffer data size (callback function parameter)
Return -

RT _EOK Set successfully

The callback function for this function is provided by the user. If the serial port is opened in the interrupt receiving mode,
when the serial port receives a data and triggers an interrupt, the callback function will be called. The data size in the buffer
at this time will be placed in the size parameter, and the serial port device handle will be placed in the dev parameter for

the user to obtain.

If the serial port is opened in DMA receiving mode, this callback function will be called when DMA finishes receiving a
batch of data.

In general, the reception callback function can transmit a semaphore or event to notify the serial port data processing thread

that data arrives.

2.4.9 Receive Data

The following function can be called to read the data received by the serial port:

| rt_size trt device read(rt_device tdev, rt_off tpos, void* buffer, rt_size t size)

27 /44
NSING Technologies Pre, Lid.
Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674
Tel: +65 69268000
Emal: salesi@nsing. com.sg

NSING WWW.Nsing.com.sg

2.4.10 Close Serial Port Device

When the application program completes the serial port operation, the serial port device can be closed by the following

function:

rt_err_trt _device close(rt_device t dev)

Parameter Description
dev The device handle
Return -
RT EOK Close the device successfully
-RT_ERROR The device has been closed and cannot be closed repeatedly
Other error codes Failed to close device
28 /44

NSING Technologies Pre, Lid.

Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674

Tel: +65 69268090

Emal: salesi@nsing. com.sg

NSING WWW.Nsing.com.sg

2.5 I*C device

2.5.1 Introduction of I*C

The I2C (Inter Integrated Circuit) bus is a half-duplex, bidirectional two-wire synchronous serial bus developed by PHILIPS.
When the I°C bus transmits data, only two signal lines are needed, one is a bidirectional data line SDA (serial data), and
the other is a bidirectional clock line SCL (serial clock). The SPI bus has two lines for receiving data and transmitting data

between the master and slave devices, while the I2C bus only uses one line for data transmission and reception.

I2C operates in the same master-slave mode as SPI. Unlick SPI, which only supports one master device, I°C allows for the
presence of multiple master devices. Each device connected to the bus has a unique address. The master device initiates
data transmission and generates a clock signal, and the slave device is addressed by the master device. Only one master

device is allowed at the same time.

2.5.2 Access I>*C Bus Device

In general, the I°C device of the MCU is used as a master device that communicates with slave devices. In RT-Thread, the
I2C master device is virtualized as an I?C bus device, and the 1>C slave device communicates with the I>C bus through the

I2C device interface. The relevant interfaces are as follows:

Function Description
rt_device find() Obtain the device handle based on the I2C bus device name
rt_i2c¢_transfer() Transfer data

2.5.3 Find I?’C Bus Device

Before using the 1>C bus device, you need to obtain the device handle according to the I2C bus device name, and then you

can operate the I2C bus device. The function to find the device is as follows:

rt_device trt device find(const char* name)

Parameter Description

name 12C bus device name

Return -

The device handle Find the corresponding device will return the corresponding device handle
RT NULL The corresponding device object was not found

2.5.4 Data Transfer

After getting the 12C bus device handle, you can use rt_i2¢_transfer() for data transfer. The function prototype is shown

as follows:
rt size trt i2c transfer(struct rt_i2c_bus device *bus, struct rt_i2c_msg msgs[], rt uint32 t num)
Parameter Description
bus I12C bus device handle
msgs[] Pointer to an array of messages to transmit
num The number of elements in the message array
29 /44

NSING Technologies Pre, Lid.

Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674

Tel: +65 69268000

Emal: salesi@nsing. com.sg

NSING

WWW.nsing.com.sg

Return -
The number of elements in the message array Success
Error code Failed

Similar the custom transmission interface of the SPI bus, the data transmitted by the custom transmission interface of the

12C bus is also in the form of a message. The parameter msgs[] points to the message array to be transmitted, and the user

can customize the content of each message to implement 2 different data transmission modes supported by the I°C bus. If

the master needs to transmit a repeat start condition, it needs to transmit 2 messages.

The prototype of the I>C message data structure is as follows:

struct rt_i2c_msg
{

rt uintl6 t addr; /* Slave address */

rt uintl6 t flags; /* Read, write flag, etc. */

rt uintl6 t len; /* Read and write data bytes */

rt uint8 t *buf; /* Read/write data buffer pointer */
}

Slave address addr: supports 7-bit and 10-bit binary addresses, please refer to the data sheet of different devices.

30 /44

NSING Technologies Pre, Lid.

Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674

Tel: +65 69268090

Emal: salesi@nsing. com.sg

NSING

2.6 ADC Device

2.6.1 Introduction of ADC

WWW.nsing.com.sg

ADC refers to an Analog-to-Digital Converter. ADC can convert continuously changing analog signals into discrete digital

signals. Real-world analog signals, such as temperature, pressure, sound or images, need to be converted into digital forms

that are easier to store, process and transmit. ADC can achieve this function and can be found in a variety of different

products. ADC was originally used to convert wireless signals to digital signals. Such as television signals, long and short

broadcast radio transmission and reception.

2.6.2 Access ADC Device

The application program accesses the ADC hardware through the ADC device management interface provided by RT-

Thread. The relevant interfaces are as follows:

Function

Description

rt_device find()

Obtain device handle based on ADC device name

rt_adc_enable() Enable the ADC device
rt_adc_read() Read ADC device data
rt_adc_disable() Close ADC device

2.6.3 Find ADC Device

The application program obtains the device handle according to the ADC device name, and then can operate the ADC

device. The function to find the device is as follows:

rt_device trt device find(const char* name)

Parameter Description

name ADC device name

Return -

The device handle If a device is found, the device handle is returned
RT NULL No device found

2.6.4 Enable ADC Channel

Before reading ADC device data, you need to enable the device first, and enable the device through the following function:

rt err trt adc enable(rt adc device tdev, rt uint32 t channel)

Parameter Description
dev ADC device handle
channel The ADC channel
Return -
RT _EOK Success
-RT_ENOSYS Failed. Device operation method is empty
Other error codes Failed
31 /44

NSING Technologies Pre, Lid.

Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674

Tel: +65 69268000

Emal: salesi@nsing. com.sg

NSING WWW.Nsing.com.sg

2.6.5 Read ADC Channel Sampling Value

The sampling value of the ADC channel can be read using the following function:

rt_uint32 trt adc_read(rt_adc_device t dev, rt_uint32_t channel)

Parameter Description

dev ADC device handle
channel The ADC channel
Return -

Value read

2.6.6 Disable ADC Channel

The ADC channel can be disabled using the following function:

rt_err trt adc disable(rt adc device tdev, rt uint32 t channel)

Parameter Description
dev ADC device handle
channel The ADC channel
Return -
RT EOK Success
-RT_ENOSYS Failed. Device operation method is empty
Other error codes Failed
32 /44

NSING Technologies Pre, Lid.

Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674

Tel: +65 69268090

Emal: salesi@nsing. com.sg

NSING

2.7 DAC Device

2.7.1 Introduction of DAC

WWW.nsing.com.sg

Digital-to-Analog Converter (DAC) refers to a device that converts discrete digital signals in the form of binary digital

quantities into continuously changing analog signals. In the digital world, it is not easy to deal with unstable and dynamic

analog signals. DAC can be found in various products. DAC is mainly used in audio amplification, video encoding, motor

control, digital potentiometers, etc.

2.7.2 Access DAC Device

The application program accesses the DAC hardware through the DAC device management interface provided by RT-

Thread. The relevant interfaces are as follows:

Function

Description

rt_device find()

Obtain the device handle based on the DAC device name

rt_dac_enable()

Enable the DAC device

rt_dac_write()

Set DAC device output value

rt_dac_disable()

Close DAC device

2.7.3 Find DAC Device

The application program obtains the device handle according to the DAC device name, and then can operate the DAC

device. The function to find the device is as follows:

rt_device trt device find(const char* name)

Parameter Description

name DAC device name

Return -

The device handle If a device is found, the device handle is returned
RT NULL No device found

2.7.4 Enable DAC Channel

Before setting the DAC device, you need to enable the device first, and enable the device through the following function:

rt err trt dac_enable(rt dac device tdev, rt uint32 t channel)

Parameter Description
dev DAC device handle
channel DAC channel
Return -
RT_EOK Success
-RT_ENOSYS Failed. Device operation method is empty
Other error codes Failed
33 /44

NSING Technologies Pre, Lid.

Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674

Tel: +65 69268000

Emal: salesi@nsing. com.sg

NSING

WWW.nsing.com.sg

2.7.5 Set DAC Channel Output Value

The DAC channel output value can be set through the following function:

rt_uint32_trt dac write(rt_dac device t dev, rt_uint32 t channel, rt uint32_t value)

Parameter Description

dev DAC device handle
channel DAC channel
value DAC output value
Return -

RT EOK Success
-RT_ENOSYS Failed

2.7.6 Disable DAC Channel

The DAC channel can be disabled through the following function:

rt_err_trt dac disable(rt_dac device t dev, rt uint32 t channel)

Parameter Description
dev DAC device handle
channel DAC channel
Return -
RT EOK Success
-RT_ENOSYS Failed. Device operation method is empty
Other error codes Failed
34 /44

NSING Technologies Pre, Lid.

Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674

Tel: +65 69268090

Emal: salesi@nsing. com.sg

NSING WWW.Nsing.com.sg

2.8 CAN Device

2.8.1 Introduction of CAN

CAN is the abbreviation of Controller Area Network (CAN). It was developed by BOSCH, a German company, known for
developing and producing automotive electronic products. CAN eventually became an international standard (ISO 11898).

It is one of the most widely used field buses in the world.

2.8.2 Access CAN Device

The application program accesses the CAN hardware controller through the I/O device management interface provided by

RT-Thread. The relevant interfaces are as follows:

Function Description

rt_device find Find device

rt_device open Open device

rt_device read Read data

rt_device write Write data

rt_device control Control device

rt_device set rx _indicate Set the receive callback function
rt_device close Close device

2.8.3 Find CAN Device

The application program finds the device according to the name of the CAN device to obtain the device handle, and then

can operate the CAN device. The function to find the device is as follows:

rt_device trt device find(const char* name)

Parameter Description

Name Device name

Return -

The device handle Find the corresponding device will return the corresponding device handle
RT NULL The corresponding device object was not found

2.8.4 Open CAN Device

Through the device handle, the application program can open and close the device. When the device is opened, it will detect
whether the device has been initialized. If it is not initialized, the initialization interface will be called by default to initialize

the device. The device can be opened through the following function:

rt_err_trt_device open(rt device tdev, rt uintl6_t oflags)
Parameter Description

dev The device handle
oflags Open device mode flag
Return -

35 /44
NSING Technologies Pre, Lid.
Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674
Tel: +65 69268000
Emal: salesi@nsing. com.sg

NSING

WWW.nsing.com.sg

open repeatedly

RT _EOK Device opened successfully
If the parameter specified when the device is registered includes the
-RT_EBUSY RT_DEVICE FLAG STANDALONE parameter, the device will not be allowed to

Other error codes

Failed to open

2.8.5 Control CAN Device

Through the command control word, the application program can configure the CAN device through the following function:

rt_err_trt device control(rt_device t dev, rt uint8 tcmd, void* arg)

Parameter Description

dev The device handle

cmd Control command

arg Control parameter

Return -

RT _EOK Function executed successfully

Other error codes

Failed to execute

2.8.6 Transmit Data

The CAN device can transmit data through the following function:

rt_size trt device write(rt_device t dev, rt_off tpos, const void* buffer, rt_size t size)

Parameter Description

dev The device handle

pos Write data offset. This parameter is not used by the CAN device
buffer CAN message pointer

size CAN message size

Return -

Is not zero The actual size of the CAN message sent

0 Failed to transmit

2.8.7 Set Reception Callback Function

The data reception indication can be set through the following function. When CAN receives data, it notifies the upper-

layer application thread that data arrives:

rt err trt device set rx_indicate(rt device tdev, rt err t (*rx_ind)(rt device tdev, rt size t size))

Parameter Description

dev The device handle

rx_ind Callback function pointer

dev Device handle (callback function parameter)
size Buffer data size (callback function parameter)
Return -

36 /44

NSING Technologies Pre, Lid.

Add: NSING, Teletech Park #02-28, 20 Science Park Road,

Singapore 117674
Tel: +65 69268000
Emal: salesi@nsing. com.sg

NSING WWW.Nsing.com.sg

| RT _EOK Set successfully

2.8.8 Receive Data

The following function can be called to read the data received by the CAN device:

rt_size trt device read(rt_device tdev, rt_off tpos, void* buffer, rt_size t size)

Parameter Description

dev The device handle

pos Read data offset. This parameter is not used by the CAN device
buffer CAN message pointer, the read data will be stored in the buffer
size CAN message size

Return -

Is not zero CAN message size

0 Failed to receive

2.8.9 Close CAN device

When the application program completes the CAN operation, the CAN device can be closed through the following function:

rt_err_trt _device close(rt_device t dev)

Parameter Description

dev The device handle

Return -

RT EOK Close device successfully

-RT_ERROR The device has been completely closed and cannot be closed repeatedly
Other error codes Failed to close device

37 /44
NSING Technologies Pre, Lid.
Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674
Tel: +65 69268090
Emal: salesi@nsing. com.sg

NSING WWW.Nsing.com.sg

2.9 HWTimer Device

2.9.1 Introduction of Timer

Hardware timer generally has two operating modes: timer mode and counter mode. No matter which mode it operates in,
the essence is to count the pulse signal through the internal counter module. Below are some important concepts of timer.
Counter mode: count the external pulse signal from the external input pin.

Timer mode: count the internal pulse signal. Timer is commonly used as timing clock to achieve timing detection, timing

response, and timing control.

2.9.2 Access Hardware Timer Device

The application program accesses the hardware timer device through the I/O device management interface provided by RT-

Thread. The relevant interfaces are as follows:

Function Description

rt_device find() Find timer device

rt_device open() Enable the timer device in read/write mode
rt_device set rx indicate() Set the timeout callback function

dovi 0 Control the timer device, you can set the timing mode
rt_device_contro
B N (single/period)/counting frequency, or stop the timer

rt_device write() Set the timer timeout value and the timer will start immediately
rt_device read() Get the current timer value
rt_device close() Close timer device

2.9.3 Find Timer Device

The application program obtains the device handle according to the name of the hardware timer device, and then can

operate the hardware timer device. The function to find the device is as follows:

rt_device trt device find(const char* name)

Parameter Description

name Hardware timer device name

Return -

Timer device handle If a device is found, the device handle is returned
RT_NULL No device found

2.9.4 Open Timer Device

Through the device handle, the application can open the device. When the device is opened, it will detect whether the
device has been initialized. If it is not initialized, the initialization interface will be called by default to initialize the device.

The device can be opened through the following function:

rt_err_trt_device open(rt_device tdev, rt uintl6_t oflags)

38 /44
NSING Technologies Pre, Lid.
Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674
Tel: +65 69268000
Emal: salesi@nsing. com.sg

NSING

WWW.nsing.com.sg

Parameter Description
dev Hardware timer device handle
Device open mode, generally open in read and write mode, that is, the
oflags value: RT DEVICE_OFLAG RDWR
Return -
RT EOK Device opened successfully
Other error codes Failed to open device

2.9.5 Set Timeout Callback Function

Set the timer timeout callback function through the following function, and this callback function will be called when the

timer times out:

rt_err_trt device set rx indicate(rt device tdev, rt err t (*rx_ind)(rt device t dev,rt size t size))
Parameter Description

dev The device handle

rx_ind Timeout callback function, provided by the caller
Return -

RT EOK Success

2.9.6 Control Timer Device

Through the command control word, the application program can configure the hardware timer device through the

following function:

rt_err_trt device control(rt_device tdev, rt uint8 t cmd, void* arg)

Parameter Description

dev The device handle

cmd Command control word

arg Control parameter

Return -

RT EOK Function executed successfully
-RT_ENOSYS Execution failed. dev is empty

Other error codes

Execution failed

2.9.7 Set Timer Timeout Value

The timeout value of the timer can be set through the following function:

rt size trt device write(rt device tdev, rt off tpos, const void* buffer, rt_size t size)

Parameter Description

dev The device handle

pos Write data offset, unused, can take a value of 0
buffer Pointer to timer timeout structure

size The size of the timeout structure

39 /44
NSING Technologies Pre, Lid.
Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674
Tel: +65 69268000
Emal: salesi@nsing. com.sg

NSING

WWW.nsing.com.sg

Return

The actual size of the data to be written

0

Failed

2.9.8 Get Current Timer Value

The current value of the timer can be obtained through the following function:

rt size trt device read(rt device tdev, rt off t pos, void* buffer, rt_size t size)

Parameter Description

dev Timer device handle

pos Write data offset, unused, can take a value of 0
buffer Output parameter, pointer to timer timeout structure
size The size of the timeout structure

Return -

The size of the timeout structure Success

0 Failed

2.9.1 Close Timer Device

The timer device can be closed through the following function:

rt_err_trt device close(rt_device t dev)

Parameter Description

dev Timer device handle

Return -

RT EOK Close device successfully

-RT_ERROR The device has been completely closed and cannot be closed repeatedly

Other error codes

Failed to close device

40 /44
NSING Technologies Pre, Lid.
Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674
Tel: +65 69268090
Emal: salesi@nsing. com.sg

NSING WWW.Nsing.com.sg

2.10 Watchdog Device

2.10.1 Introduction of Watchdog

The hardware watchdog is a timer whose timing output is connected to the reset terminal of the circuit. In the commercial
embedded system, in order to automatically reset the system in case of abnormal conditions, the watchdog is generally

introduced.

When the watchdog is started, the counter starts counting automatically. If it is not reset before the counter overflows, it
will send a reset signal to the CPU to restart the system (commonly known as "bitten by the dog"). When the system is
running normally, it is necessary to clear the watchdog counter (commonly known as "feed the dog") within the time
interval allowed by the watchdog to prevent the generation of a reset signal. If the system is functioning property, the
program can "feed the dog" on time. If the program malfunctions and fails to "feed the dog", the system will be reset by

the watchdog.

2.10.2 Access Watchdog Device

The application program accesses the watchdog hardware through the I/O device management interface provided by RT-

Thread. The relevant interfaces are as follows:

Function Description

rt_device find() Find the device based on the watchdog device name to obtain the device handle
rt_device_init() Initialize watchdog device

rt_device control() Control watchdog device

rt_device close() Close watchdog device

2.10.3 Find Watchdog

The application program obtains the device handle according to the name of the watchdog device, and then can operate

the watchdog device. The function to find watchdog is as follows:

rt_device trt device find(const char* name)

Parameter Description

Name Watchdog device name

Return -

The device handle If a device is found, the device handle is returned
RT NULL The corresponding device object was not found

2.10.4 Initialize Watchdog

Before watchdog device is used, it needs to be initialized first. The watchdog device can be initialized through the following

function:

rt_err trt device init(rt_device tdev)

Parameter Description
dev Watchdog device handle
41 /44

NSING Technologies Pre, Lid.

Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674

Tel: +65 69268000

Emal: salesi@nsing. com.sg

NSING

WWW.nsing.com.sg

Return -
RT_EOK Device initialization succeeded
-RT_ENOSYS Initialization failed. The watchdog device driver initialization function is empty

Other error codes

Failed to open device

2.10.5 Control Watchdog

Through the command control word, the application program can configure the watchdog device through the following

function:

rt_err_trt device control(rt_device t dev, rt_uint8 tcmd, void* arg)

Parameter Description

dev Watchdog device handle

cmd Command control word

arg Control parameter

Return -

RT _EOK Function executed successfully
-RT_ENOSYS Execution failed. dev is empty

Other error codes

Execution failed

2.10.6 Feed Dog in The Idle Thread Hook Function

static void idle hook(void)

{

/* Feed the dog in the idle thread callback */
rt_device_control(wdg_dev, RT_DEVICE _CTRL WDT_KEEPALIVE, NULL);

2.10.7 Close Watchdog

When the application program completes the watchdog operation, the watchdog device can be closed through the following

function:

rt_err_trt_device close(rt_device t dev)

Parameter Description

dev Watchdog device handle

Return -

RT EOK Close device successfully

-RT _ERROR The device has been completely closed and cannot be closed repeatedly

Other error codes

Failed to close device

42 /44

NSING Technologies Pre, Lid.

Add: NSING, Teletech Park #02-28, 20 Science Park Road,

Singapore 117674
Tel: +65 69268000
Emal: salesi@nsing. com.sg

NSING

3 Version History

www.nsing.com.sg

Version

Date

Changes

V1.0

2021.05.07

Initial version

43 /44

NSING Technologies Pile. Lid.

Add: NSING, Teletech Park #02-28, 20 Science Park Road,

Singapore 117674
Tel: +65 69268090

Emal: salesi@nsing. com.sg

NSING WWW.Nsing.com.sg

4 Disclaimer

This document is the exclusive property of NSING TECHNOLOGIES PTE. LTD.(Hereinafter referred to as NSING).
This document, and the product of NSING described herein (Hereinafter referred to as the Product) are owned by
NSING under the laws and treaties of Republic of Singapore and other applicable jurisdictions worldwide. The
intellectual properties of the product belong to Nations Technologies Inc. and Nations Technologies Inc. does not
grant any third party any license under its patents, copyrights, trademarks, or other intellectual property rights. Names
and brands of third party may be mentioned or referred thereto (if any) for identification purposes only. NSING
reserves the right to make changes, corrections. enhancements, modifications, and improvements to this document at
any time without notice. Please contact NSING and obtain the latest version of this document before placing orders.
Although NATIONS has attempted to provide accurate and reliable information, NATIONS assumes no
responsibility for the accuracy and reliability of this document. It is the responsibility of the user of this document to
properly design, program, and test the functionality and safety of any application made of this information and any
resulting product. In no event shall NATIONS be liable for any direct, indirect, incidental, special, exemplary, or
consequential damages arising in any way out of the use of this document or the Product.

NATIONS Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure
of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed,
Insecure Usage’. Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, all types of safety devices, and other applications intended to
supporter sustain life. All Insecure Usage shall be made at user's risk. User shall indemnify NATIONS and hold
NATIONS harmless from and against all claims, costs, damages, and other liabilities, arising from or related to any
customer's Insecure Usage Any express or implied warranty with regard to this document or the Product, including,
but not limited to. The warranties of merchantability, fitness for a particular purpose and non-infringement are
disclaimed to the fullest extent permitted by law. Unless otherwise explicitly permitted by NATIONS, anyone may

not use, duplicate, modify, transcribe or otherwise distribute this document for any purposes, in whole or in part.

44 / 44
NSING Technologies Pre, Lid.
Add: NSING, Teletech Park #02-28, 20 Science Park Road,
Singapore 117674
Tel: +65 69268000
Emal: salesi@nsing. com.sg

	1 Overview
	1.1 Brief Introduction

	2 Device Registration
	2.1 I/O Device
	2.1.1 Introduction of I/O Device
	2.1.2 Create and Register I/O Device
	2.1.3 Access I/O Device
	2.1.4 Find Device
	2.1.5 Initialize Device
	2.1.6 Open/Close Device
	2.1.7 Control Device
	2.1.8 Read/Write Device
	2.1.9 Data Transmission and Reception Callback

	2.2 PIN Device
	2.2.1 Introduction of PIN
	2.2.2 Access PIN Device
	2.2.3 Set Pin Mode
	2.2.4 Set Pin Level
	2.2.5 Read Pin Level
	2.2.6 Bind Pin Interrupt Callback Function
	2.2.7 Enable Pin Interrupt
	2.2.8 Breakout Pin Interrupt Callback Function

	2.3 SPI Device
	2.3.1 Introduction of SPI
	2.3.2 Mount SPI Device
	2.3.3 Configure SPI Device
	2.3.4 Access SPI Device
	2.3.5 Find SPI Device
	2.3.6 Customize Transmission Data
	2.3.7 Transfer Data Once
	2.3.8 Send Data Once
	2.3.9 Receive Data Once
	2.3.10 Send Data Twice in Succession
	2.3.11 Send First, Then Receive
	2.3.12 Special Application Scenario
	2.3.13 Get The Bus
	2.3.14 Select Chip Selection
	2.3.15 Add A Message
	2.3.16 Release Chip Selection
	2.3.17 Release The Bus

	2.4 UART Device
	2.4.1 Introduction of UART
	2.4.2 Access Serial Port Device
	2.4.3 Find Serial Port Device
	2.4.4 Open Serial Port Device
	2.4.5 Control Serial Port Device
	2.4.6 Transmit Data
	2.4.7 Set The Transmission Completion Callback Function
	2.4.8 Set The Reception Callback Function
	2.4.9 Receive Data
	2.4.10 Close Serial Port Device

	2.5 I2C device
	2.5.1 Introduction of I2C
	2.5.2 Access I2C Bus Device
	2.5.3 Find I2C Bus Device
	2.5.4 Data Transfer

	2.6 ADC Device
	2.6.1 Introduction of ADC
	2.6.2 Access ADC Device
	2.6.3 Find ADC Device
	2.6.4 Enable ADC Channel
	2.6.5 Read ADC Channel Sampling Value
	2.6.6 Disable ADC Channel

	2.7 DAC Device
	2.7.1 Introduction of DAC
	2.7.2 Access DAC Device
	2.7.3 Find DAC Device
	2.7.4 Enable DAC Channel
	2.7.5 Set DAC Channel Output Value
	2.7.6 Disable DAC Channel

	2.8 CAN Device
	2.8.1 Introduction of CAN
	2.8.2 Access CAN Device
	2.8.3 Find CAN Device
	2.8.4 Open CAN Device
	2.8.5 Control CAN Device
	2.8.6 Transmit Data
	2.8.7 Set Reception Callback Function
	2.8.8 Receive Data
	2.8.9 Close CAN device

	2.9 HWTimer Device
	2.9.1 Introduction of Timer
	2.9.2 Access Hardware Timer Device
	2.9.3 Find Timer Device
	2.9.4 Open Timer Device
	2.9.5 Set Timeout Callback Function
	2.9.6 Control Timer Device
	2.9.7 Set Timer Timeout Value
	2.9.8 Get Current Timer Value
	2.9.1 Close Timer Device

	2.10 Watchdog Device
	2.10.1 Introduction of Watchdog
	2.10.2 Access Watchdog Device
	2.10.3 Find Watchdog
	2.10.4 Initialize Watchdog
	2.10.5 Control Watchdog
	2.10.6 Feed Dog in The Idle Thread Hook Function
	2.10.7 Close Watchdog

	3 Version History
	4 Disclaimer

